На чем основывается школьное химическое образование. Современные требования к учителю химии

Все еще со школьной скамьи помнят Рудзитиса и Фельдмана или Цветкова, изданные более 30-ти лет назад. Конечно, они переиздавалась: бумага стала лучше, цвета ярче, картинок больше. Из учебников убрали такие разделы, как «химическая промышленность Советского Союза», «основные специальности, востребованные на сернокислотном производстве» и прочие следы эпохи СССР. Убрать-то убрали, а добавили ли что-нибудь? К сожалению, нет. Содержание учебников осталось тем же самым. Таким образом, наши дети учатся по тем же учебникам, по которым учились мы и наши родители. Неужели в химии с тех пор ничего не изменилось?

Разумеется, химия ушла далеко вперед. Поэтому, ясное дело, необходимы новые учебные программы, новые учебники. И действительно, новые учебники появляются с умопомрачительной быстротой. Вот только содержание этих учебников, в большинстве случаев, не превосходит, а то и уступает по объему материала учебникам 70-80-х годов. И с каждым годом учебники по химии все сокращаются и упрощаются, а химия медленно, но верно из серьезной естественной науки превращается в ненавязчивую «сказку о веществах».

Открыв учебник по химии для 11 класса общеобразовательной школы, первую химическую формулу вы увидите лишь на сотой странице...

Немаловажен и тот факт, что большинство школьных программ основывается, в целом, на знаниях, полученных в XVIII-XIX веках. И если общехимические представления с тех пор не претерпели существенных изменений, то такие основополагающие разделы как «Строение материи» или «Органическая химия» находятся на качественно ином уровне.

Многие задаются вопросом, что же случилось с некогда лучшей в мире советской образовательной системой? В плане химического образования ответ весьма прост. Она безнадежно устарела. Любой современный европейский учебник по химии содержит представления о спектральном анализе (основном методе изучения химических соединений) или реакциях кросс-сочетания (за которые была вручена последняя Нобелевская премия по химии). Российский школьник даже слов таких не слышит на уроке химии. Это приводит к росту и без того гигантского разрыва между программами среднего и высшего химического образования. Поэтому так велик процент отчисленных с первого курса технических вузов - многие не способны за 4 месяца до первой зимней сессии преодолеть «пропасть» между школой и вузом.

Спасений остается немного - либо отдать ребенка в спецшколу (число которых весьма ограниченно), либо нанять репетитора. Только в этом случае у ребенка появляется возможность не только поступить на бюджетное место в вуз, но и закрепиться там.

Как же пытаются решить эту проблему в Министерстве образования? А никак. Они ее только усугубляют. Самым мощным ударом по химическому образованию (и не только химическому) в России стал Единый Государственный Экзамен. Раньше для поступления в вуз нужно было долго и усиленно готовится к вступительным экзаменам. Экзамены эти составляли преподаватели вуза, с учетом требований, которые они будут предъявлять к будущим первокурсникам, несколько сглаживая тем самым разрыв между школой и вузом. Ну, а такой вид проверки знаний как устный экзамен или собеседование в принципе незаменим, потому как является наилучшим способом адекватной оценки знаний учащегося. Теперь же достаточно наставить галочек в бланке ЕГЭ, уровень которого нельзя назвать даже базовым, получить сертификат и поступить в любой химический, медицинский или любой другой профильный вуз. Поскольку результаты ЕГЭ можно послать в большое количество вузов, конкурс в них резко вырос, а в силу низкого уровня ЕГЭ вероятность поступления в вуз выпускника с блестящими знаниями точно такая же, как у выпускника, еле осилившего элементарный курс химии. То есть врачами с равными шансами могут стать и трудолюбивый и любознательный отличник, и ленивый троечник. Однако, вуз, приняв по ЕГЭ троечников, некоторым отличникам будет вынужден в приеме отказать.

Другим «орудием борьбы» Минобразования с химией являются учебные планы. Количество часов, отводимых на химию в учебном плане для 10-11-х классов, постоянно сокращается и составляет сейчас не более 2-х часов в неделю. При этом на парламентском уровне ведется обсуждение учебных программ по истории и обществознанию, и количество отводимых на них часов растет. Однако парламентарии, видимо, не понимают, что общество нуждается не только в юристах, экономистах или менеджерах (которых в последнее время имеется с избытком), но и в грамотных врачах, инженерах, ученых. Юрист не вылечит вас, если вы заболели, политолог не построит вам дом, а менеджер не имеет ни малейшего понятия о получении и свойствах пластмасс, красителей, лекарств и других жизненно важных веществ и материалов. Знать свои права, свою историю, безусловно, нужно, но, может быть, знание естественных наук не менее важно? Откуда возьмутся в России хорошие специалисты в области медицины, химии или техники без должной подготовки в школьные годы?..

Ромашов Л.В.

Выступление на втором
Московском педагогическом марафоне
учебных предметов, 9 апреля 2003 г.

Естественные науки во всем мире переживают нелегкие времена. Финансовые потоки уходят из науки и образования в военно-политическую сферу, престиж научных работников и преподавателей падает, а необразованность большей части общества стремительно растет. Миром правит невежество. Дело доходит до того, что в Америке правые христиане требуют юридической отмены второго закона термодинамики, который, по их мнению, противоречит религиозным доктринам.
Больше других естественных наук страдает химия. У большинства людей эта наука ассоциируется с химическим оружием, загрязнением окружающей среды, техногенными катастрофами, производством наркотиков и т. д. Преодоление «хемофобии» и массовой химической безграмотности, создание привлекательного общественного образа химии – одна из задач химического образования, современное состояние которого в России мы хотим обсудить.

Программа модернизации (реформы)
образования в России и ее недостатки

В Советском Союзе существовала отлаженная система химического образования, основанная на линейном подходе, когда изучение химии начиналось в средних классах и заканчивалось в старших. Была разработана согласованная схема обеспечения учебного процесса, в том числе: программы и учебники, подготовка и повышение квалификации учителей, система химических олимпиад всех уровней, комплекты учебных пособий («Библиотека школы», «Библиотека учителя» и
т. д.), общедоступные методические журналы («Химия в школе» и т. д.), демонстрационные и лабораторные приборы.
Образование – консервативная и инертная система, поэтому даже после распада СССР химическое образование, которое понесло тяжелые финансовые потери, продолжало выполнять свои задачи. Однако несколько лет назад в России началась реформа системы образования, главная цель которой – поддержка вхождения новых поколений в глобализованный мир, в открытое информационное сообщество. Для этого, по мнению авторов реформы, центральное место в содержании образования должны занимать коммуникативность, информатика, иностранные языки, межкультурное обучение. Как видим, для естественных наук места в этой реформе не предусмотрено.
Объявлено, что новая реформа должна обеспечить переход на сопоставимую с мировой систему показателей качества и стандартов образования. Разработан и план конкретных мероприятий, среди которых главные – переход на 12-летнее школьное обучение, введение единого государственного экзамена (ЕГЭ) в форме всеобщего тестирования, разработка новых стандартов образования на основе концентрической схемы, согласно которой к моменту окончания девятилетки ученики должны иметь целостное представление о предмете.
Как повлияет эта реформа на химическое образование в России? На наш взгляд, резко отрицательно. Дело в том, что среди разработчиков Концепции модернизации российского образования не было ни одного представителя естествознания, поэтому интересы естественных наук в этой концепции совершенно не учтены. ЕГЭ в той форме, в какой его задумали авторы реформы, испортит систему перехода от средней школы к высшей, которую вузы с таким трудом сформировали в первые годы независимости России, и разрушит преемственность российского образования.
Один из аргументов в пользу ЕГЭ состоит в том, что он, по мнению идеологов реформы, обеспечит равный доступ к высшему образованию для различных социальных слоев и территориальных групп населения.

Наш многолетний опыт дистанционного обучения, связанный с проведением Соросовской олимпиады по химии и заочно-очной формой приема на химический факультет МГУ, показывает, что дистанционное тестирование, во-первых, не дает объективной оценки знаний, а во-вторых, не обеспечивает школьникам равных возможностей. За 5 лет Соросовских олимпиад через наш факультет прошло больше 100 тыс. письменных работ по химии, и мы убедились в том, что общий уровень решений очень сильно зависит от региона; кроме того, чем ниже был образовательный уровень региона, тем больше оттуда присылали списанных работ. Еще одно существенное возражение против ЕГЭ состоит в том, что тестирование как форма проверки знаний имеет существенные ограничения. Даже корректно составленный тест не позволяет объективно оценить умение школьника рассуждать и делать выводы. Наши студенты изучили материалы ЕГЭ по химии и обнаружили большое число некорректных или неоднозначных вопросов, которые нельзя применять для тестирования школьников. Мы пришли к выводу, что ЕГЭ можно использовать только как одну из форм контроля работы средних школ, но ни в коем случае не как единственный, монопольный механизм доступа к высшему образованию.
Другой отрицательный аспект реформы связан с разработкой новых стандартов образования, которые должны приблизить российскую систему образования к европейской. В проекте стандартов, предложенном в 2002 г. Министерством образования, был нарушен один из главных принципов естественно-научного образования – предметность . Руководители рабочей группы, которые составляли проект, предлагали подумать о том, чтобы отказаться от отдельных школьных курсов химии, физики и биологии и заменить их единым интегрированным курсом «Естествознание». Такое решение, пусть даже принятое на долгосрочную перспективу, просто похоронило бы химическое образование в нашей стране.
Что же в этих неблагоприятных внутриполитических условиях можно сделать для сохранения традиций и развития химического образования в России? Теперь мы переходим к нашей позитивной программе, многое из которой уже удалось реализовать. Эта программа имеет два основных аспекта – содержательный и организационный: мы стараемся определять содержание химического образования в нашей стране и развивать новые формы взаимодействия центров химического образования.

Новый государственный стандарт
химического образования

Химическое образование начинается со школы. Содержание школьного образования определяется главным нормативным документом – государственным стандартом школьного образования. В рамках принятой у нас концентрической схемы существуют три стандарта по химии: основное общее образование (8–9-е классы), базовое среднее и профильное среднее образование (10–11-е классы). Один из нас (Н.Е.Кузьменко) возглавил рабочую группу Министерства образования по подготовке стандартов, и к настоящему времени эти стандарты полностью сформулированы и готовы к законодательному утверждению.
Принимаясь за разработку стандарта химического образования, авторы исходили из тенденций развития современной химии и учитывали ее роль в естествознании и в обществе. Современная химия это фундаментальная система знаний об окружающем мире, основанная на богатом экспериментальном материале и надежных теоретических положениях . Научное содержание стандарта базируется на двух основных понятиях: «вещество» и «химическая реакция».
«Вещество» – главное понятие химии. Вещества окружают нас везде: в воздухе, пище, почве, бытовой технике, растениях и, наконец, в нас самих. Часть из этих веществ нам дана природой в готовом виде (кислород, вода, белки, углеводы, нефть, золото), другую часть человек получил путем небольшой модификации природных соединений (асфальт или искусственные волокна), но самое большое число веществ, которые раньше в природе не существовали, человек синтезировал самостоятельно. Это – современные материалы, лекарства, катализаторы. На сегодняшний день известно около 20 млн органических и около 500 тыс. неорганических веществ, и каждое из них обладает внутренней структурой. Органический и неорганический синтез достиг такой высокой степени развития, что позволяет синтезировать соединения с любой заранее заданной структурой. В связи с этим на первый план в современной химии выходит
прикладной аспект , в котором упор делается на связи структуры вещества с его свойствами , а основная задача состоит в поиске и синтезе полезных веществ и материалов, обладающих заданными свойствами.
Самое интересное в окружающем мире состоит в том, что он постоянно изменяется. Второе главное понятие химии – это «химическая реакция». Каждую секунду в мире происходит неисчислимое множество реакций, в результате которых одни вещества превращаются в другие. Некоторые реакции мы можем наблюдать непосредственно, например ржавление железных предметов, свертывание крови, сгорание автомобильного топлива. В то же время подавляющее большинство реакций остаются невидимыми, но именно они определяют свойства окружающего нас мира. Для того чтобы осознать свое место в мире и научиться им управлять, человек должен глубоко понять природу этих реакций и те законы, которым они подчиняются.
Задача современной химии состоит в изучении функций веществ в сложных химических и биологических системах, анализе связи структуры вещества с его функциями и синтезе веществ с заданными функциями.
Исходя из того, что стандарт должен служить инструментом развития образования, было предложено разгрузить содержание основного общего образования и оставить в нем только те элементы содержания, образовательная ценность которых подтверждена отечественной и мировой практикой преподавания химии в школе. Это минимальная по объему, но функционально полная система знаний.
Стандарт основного общего образования включает шесть содержательных блоков:

  • Методы познания веществ и химических явлений.
  • Вещество.
  • Химическая реакция.
  • Элементарные основы неорганической химии.
  • Первоначальные представления об органических веществах.
  • Химия и жизнь.

Стандарт базового среднего образования разбит на пять содержательных блоков:

  • Методы познания химии.
  • Теоретические основы химии.
  • Неорганическая химия.
  • Органическая химия.
  • Химия и жизнь.

Основу обоих стандартов составляют периодический закон Д.И.Менделеева, теория строения атомов и химической связи, теория электролитической диссоциации и структурная теория органических соединений.
Стандарт базового среднего уровня призван обеспечить выпускнику средней школы прежде всего возможность ориентироваться в общественных и личных проблемах, связанных с химией.
В стандарте профильного уровня система знаний значительно расширена в первую очередь за счет представлений о строении атомов и молекул, а также о закономерностях протекания химических реакций, рассматриваемых с точки зрения теорий химической кинетики и химической термодинамики. Тем самым обеспечивается подготовка выпускников средней школы к продолжению химического образования в высшей школе.

Новая программа и новые
учебники по химии

Новый, научно обоснованный стандарт химического образования подготовил благоприятную почву для разработки новой школьной программы и создания комплекта школьных учебников на ее основе. В этом докладе мы представляем школьную программу по химии для 8–9-го классов и концепцию серии учебников для 8–11-го классов, созданных авторским коллективом химического факультета МГУ.
Программа курса химии основной общеобразовательной школы рассчитана на учащихся 8–9-го классов. От типовых программ, действующих в настоящее время в средних школах России, ее отличают более выверенные междисциплинарные связи и точный отбор материала, необходимого для создания целостного естественно-научного восприятия мира, комфортного и безопасного взаимодействия с окружающей средой в условиях производства и в быту. Программа построена таким образом, что в ней главное внимание уделяется тем разделам химии, терминам и понятиям, которые так или иначе связаны с повседневной жизнью, а не являются «кабинетным знанием» узко ограниченного круга лиц, чья деятельность связана с химической наукой.
В течение первого года обучения химии (8-й класс) основное внимание уделяется формированию у учащихся элементарных химических навыков, «химического языка» и химического мышления. Для этого выбраны объекты, знакомые из повседневной жизни (кислород, воздух, вода). В 8-м классе мы сознательно избегаем сложного для восприятия школьников понятия «моль», практически не используем расчетные задачи. Основная идея этой части курса – привить ученикам навыки описания свойств различных веществ, сгруппированных по классам, а также показать связь между строением веществ и их свойствами.
На втором году обучения (9-й класс) введение дополнительных химических понятий сопровождается рассмотрением строения и свойств неорганических веществ. В специальном разделе кратко рассматриваются элементы органической химии и биохимии в объеме, предусмотренном государственным стандартом образования.

Для развития химического взгляда на мир в курсе проводятся широкие корреляции между полученными ребятами в классе элементарными химическими знаниями и свойствами тех объектов, которые известны школьникам в повседневной жизни, но до этого ими воспринимались лишь на бытовом уровне. На основе химических представлений учащимся предлагается взглянуть на драгоценные и отделочные камни, стекло, фаянс, фарфор, краски, продукты питания, современные материалы. В программе расширен круг объектов, которые описываются и обсуждаются лишь на качественном уровне, не прибегая к громоздким химическим уравнениям и сложным формулам. Мы обращали большое внимание на стиль изложения, который позволяет вводить и обсуждать химические понятия и термины в живой и наглядной форме. В этой связи постоянно подчеркиваются междисциплинарные связи химии с другими науками, не только естественными, но и гуманитарными.
Новая программа реализована в комплекте школьных учебников для 8–9-х классов, один из которых уже сдан в печать, а другой находится в стадии написания. При создании учебников мы учитывали изменение социальной роли химии и общественного интереса к ней, которое вызвано двумя основными взаимосвязанными факторами. Первое – это «хемофобия» , т. е. отрицательное отношение общества к химии и ее проявлениям. В этой связи важно на всех уровнях объяснять, что плохое – не в химии, а в людях, которые не понимают законов природы или имеют нравственные проблемы.
Химия – очень мощный инструмент в руках человека, в ее законах нет понятий добра и зла. Пользуясь одними и теми же законами, можно придумать новую технологию синтеза наркотиков или ядов, а можно – новое лекарство или новый строительный материал.
Другой социальный фактор – это прогрессирующая химическая безграмотность общества на всех его уровнях – от политиков и журналистов до домохозяек. Большинство людей совершенно не представляет, из чего состоит окружающий мир, не знает элементарных свойств даже простейших веществ и не может отличить азот от аммиака, а этиловый спирт от метилового. Именно в этой области грамотный учебник по химии, написанный простым и понятным языком, может сыграть большую просветительскую роль.
При создании учебников мы исходили из следующих постулатов.

Основные задачи школьного курса химии

1. Формирование научной картины окружающего мира и развитие естественно-научного мировоззрения. Представление химии как центральной науки, направленной на решение насущных проблем человечества.
2. Развитие химического мышления, умения анализировать явления окружающего мира в химических терминах, способности говорить (и думать) на химическом языке.
3. Популяризация химических знаний и внедрение представлений о роли химии в повседневной жизни и ее прикладном значении в жизни общества. Развитие экологического мышления и знакомство с современными химическими технологиями.
4. Формирование практических навыков безопасного обращения с веществами в повседневной жизни.
5. Пробуждение живого интереса у школьников к изучению химии как в рамках школьной программы, так и дополнительно.

Основные идеи школьного курса химии

1. Химия – центральная наука о природе, тесно взаимодействующая с другими естественными науками. Основное значение для жизни общества имеют прикладные возможности химии.
2. Окружающий мир состоит из веществ, которые характеризуются определенной структурой и способны к взаимным превращениям. Существует связь между структурой и свойствами веществ. Задача химии состоит в создании веществ с полезными свойствами.
3. Окружающий мир постоянно изменяется. Его свойства определяются химическими реакциями, которые в нем протекают. Для того чтобы управлять этими реакциями, необходимо глубоко понимать законы химии.
4. Химия – мощный инструмент для преобразования природы и общества. Безопасное применение химии возможно только в высокоразвитом обществе с устойчивыми нравственными категориями.

Методические принципы и стиль учебников

1. Последовательность изложения материала ориентирована на изучение химических свойств окружающего мира с постепенным и деликатным (т. е. ненавязчивым) знакомством с теоретическими основами современной химии. Описательные разделы чередуются с теоретическими. Материал равномерно распределен по всему периоду обучения.
2. Внутренняя замкнутость, самодостаточность и логическая обоснованность изложения. Любой материал преподносится в контексте общих проблем развития науки и общества.
3. Постоянная демонстрация связи химии с жизнью, частое напоминание о прикладном значении химии, научно-популярный анализ веществ и материалов, с которыми учащиеся сталкиваются в повседневной жизни.
4. Высокий научный уровень и строгость изложения. Химические свойства веществ и химические реакции описываются так, как они идут на самом деле. Химия в учебниках – реальная, а не «бумажная».
5. Дружелюбный, легкий и беспристрастный стиль изложения. Простой, доступный и грамотный русский язык. Использование «сюжетов» – коротких, занимательных рассказов, связывающих химические знания с повседневной жизнью, – для облегчения восприятия. Широкое использование иллюстраций, которые составляют около 15% объема учебников.
6. Двухуровневая структура представления материала. «Крупный шрифт» – это базовый уровень, «мелкий шрифт» предназначен для более глубокого изучения.
7. Широкое использование простых и наглядных демонстрационных опытов, лабораторных и практических работ для изучения экспериментальных аспектов химии и развития практических навыков учащихся.
8. Использование вопросов и задач двух уровней сложности для более глубокого усвоения и закрепления материала.

В комплект учебных пособий мы предполагаем включить:

  • учебники по химии для 8–11-го классов;
  • методические указания для учителей, тематическое планирование уроков;
  • дидактические материалы;
  • книгу для чтения учащимися;
  • справочные таблицы по химии;
  • компьютерную поддержку в виде компакт-дисков, содержащих: а) электронный вариант учебника; б) справочные материалы; в) демонстрационные опыты; г) иллюстративный материал; д) анимационные модели; е) программы для решения расчетных задач; ж) дидактические материалы.

Мы надеемся, что новые учебники позволят многим школьникам по-новому взглянуть на наш предмет и покажут им, что химия – увлекательная и очень полезная наука.
В развитии интереса школьников к химии кроме учебников большую роль играют химические олимпиады.

Современная система химических олимпиад

Система химических олимпиад – одна из немногих образовательных структур, которые выдержали распад страны. Всесоюзная олимпиада по химии трансформировалась во Всероссийскую, сохранив ее основные черты. В настоящее время эта олимпиада проходит в пять этапов: школьный, районный, областной, федеральный окружной и финальный. Победители финального этапа представляют Россию на Международной химической олимпиаде. Самыми важными с точки зрения образования являются наиболее массовые этапы – школьный и районный, за который отвечают школьные учителя и методические объединения городов и районов России. За всю олимпиаду в целом отвечает Министерство образования.
Интересно, что бывшая Всесоюзная олимпиада по химии тоже сохранилась, но в новом качестве. Ежегодно химический факультет МГУ организует международную Менделеевскую олимпиаду , в которой участвуют победители и призеры химических олимпиад стран СНГ и Балтии. В прошлом году эта олимпиада с большим успехом прошла в Алма-Ате, в этом году – в г. Пущино Московской области. Менделеевская олимпиада позволяет талантливым детям из бывших республик Советского Союза поступить в МГУ и другие престижные вузы без экзаменов. Необычайно ценно также общение преподавателей химии во время олимпиады, которое способствует сохранению единого химического пространства на территории бывшего Союза.
В последние пять лет число предметных олимпиад резко возросло за счет того, что многие вузы в поисках новых форм привлечения абитуриентов стали проводить собственные олимпиады и засчитывать результаты этих олимпиад в качестве вступительных экзаменов. Одним из пионеров этого движения был химический факультет МГУ, который ежегодно проводит заочно-очную олимпиаду по химии, физике и математике. Этой олимпиаде, которую мы назвали «Абитуриент МГУ», в этом году исполняется уже 10 лет. Она обеспечивает равный доступ всем группам школьников к обучению в МГУ. Олимпиада проходит в два этапа: заочный и очный. первый – заочный – этап имеет ознакомительный характер. Мы публикуем задания во всех профильных газетах и журналах и рассылаем задания по школам. На решение отводится почти полгода. Тех, кто выполнил хотя бы половину заданий, мы приглашаем на второй этап – очный тур, который проходит в 20-х числах мая. Письменные задания по математике и химии позволяют определить победителей олимпиады, которые получают преимущества при поступлении на наш факультет.
География этой олимпиады необычайно широка. Каждый год в ней участвуют представители всех регионов России – от Калининграда до Владивостока, а также несколько десятков «иностранцев» из стран СНГ. Развитие этой олимпиады привело к тому, что почти все талантливые дети из провинции едут учиться к нам: более 60% студентов химического факультета МГУ – иногородние.
В то же время вузовские олимпиады постоянно испытывают давление со стороны Министерства образования, которое проводит идеологию ЕГЭ и стремится лишить вузы самостоятельности в определении форм приема абитуриентов. И здесь на помощь министерству приходит, как это ни странно, Всероссийская олимпиада. Идея министерства состоит в том, что преимущества при поступлении в вузы должны иметь только участники тех олимпиад, которые организационно вливаются в структуру Всероссийской олимпиады. Любой вуз может самостоятельно проводить какую угодно олимпиаду безо всякой связи с Всероссийской, но результаты такой олимпиады не будут засчитываться при поступлении в этот вуз.
Если такая идея будет законодательно оформлена, это нанесет довольно сильный удар по системе приема в вузы и, самое главное, по школьникам выпускных классов, которые лишатся многих стимулов к поступлению в выбранный ими вуз.
Однако в этом году прием в вузы будет проходить по прежним правилам, и в связи с этим мы хотим рассказать о вступительном экзамене по химии в МГУ.

Вступительный экзамен по химии в МГУ

Вступительный экзамен по химии в МГУ сдают на шести факультетах: химическом, биологическом, медицинском, почвенном, факультете наук о материалах и новом факультете биоинженерии и биоинформатики. Экзамен – письменный, рассчитан на 4 часа. За это время школьники должны решить 10 задач разного уровня сложности: от тривиальных, т. е. «утешительных», до довольно сложных, которые позволяют дифференцировать оценки.
Ни одна из задач не требует специальных знаний, выходящих за рамки того, что изучают в профильных химических школах. Тем не менее большинство задач строится так, что для их решения требуются размышления, основанные не на запоминании, а на владении теорией. В качестве примера мы хотим привести несколько таких задач из разных разделов химии.

Теоретическая химия

Задача 1 (биологический факультет). Константа скорости реакции изомеризации A B равна 20 с –1 , а константа скорости обратной реакции B A равна 12 с –1 . Рассчитайте состав равновесной смеси (в граммах), полученной из 10 г вещества A.

Решение
Пусть в B превратилось x г вещества A, тогда в равновесной смеси содержится (10 – x ) г A и x г B. При равновесии скорость прямой реакции равна скорости обратной реакции:

20 (10 – x ) = 12x ,

откуда x = 6,25.
Состав равновесной смеси: 3,75 г A, 6,25 г B.
Ответ . 3,75 г A, 6,25 г B.

Неорганическая химия

Задача 2 (биологический факультет). Какой объем углекислого газа (н. у.) надо пропустить через 200 г 0,74%-го раствора гидроксида кальция, чтобы масса выпавшего осадка составила 1,5 г, а раствор над осадком не давал окраски с фенолфталеином?

Решение
При пропускании углекислого газа через раствор гидроксида кальция сначала образуется осадок карбоната кальция:

который затем может растворяться в избытке CO 2:

CaCO 3 + CO 2 + H 2 O = Ca(HCO 3) 2 .

Зависимость массы осадка от количества вещества CO 2 имеет следующий вид:

При недостатке CO 2 раствор над осадком будет содержать Ca(OH) 2 и давать фиолетовое окрашивание с фенолфталеином. По условию этого окрашивания нет, следовательно, CO 2 находится в избытке
по сравнению с Ca(OH) 2 , т. е. сначала весь Ca(OH) 2 превращается в CaCO 3 , а затем CaCO 3 частично растворяется в CO 2 .

(Ca(OH) 2) = 200 0,0074/74 = 0,02 моль, (CaCO 3) = 1,5/100 = 0,015 моль.

Для того чтобы весь Ca(OH) 2 перешел в CaCO 3 , через исходный раствор надо пропустить 0,02 моль CO 2 , а затем пропустить еще 0,005 моль CO 2 , чтобы 0,005 моль CaCO 3 растворилось и осталось 0,015 моль.

V(CO 2) = (0,02 + 0,005) 22,4 = 0,56 л.

Ответ . 0,56 л CO 2 .

Органическая химия

Задача 3 (химический факультет). Ароматический углеводород с одним бензольным кольцом содержит 90,91% углерода по массе. При окислении 2,64 г этого углеводорода подкисленным раствором перманганата калия выделяется 962 мл газа (при 20 °С и нормальном давлении), а при нитровании образуется смесь, содержащая два мононитропроизводных. Установите возможную структуру исходного углеводорода и напишите схемы упомянутых реакций. Сколько мононитропроизводных образуется при нитровании продукта окисления углеводорода?

Решение

1) Определим молекулярную формулу искомого углеводорода:

(С):(Н) = (90,91/12):(9,09/1) = 10:12.

Следовательно, углеводород – С 10 Н 12 (М = 132 г/моль) с одной двойной связью в боковой цепи.
2) Найдем состав боковых цепей:

(С 10 Н 12) = 2,64/132 = 0,02 моль,

(СО 2) = 101,3 0,962/(8,31 293) = 0,04 моль.

Значит, из молекулы С 10 Н 12 при окислении перманганатом калия уходят два атома углерода, следовательно, было два заместителя: СН 3 и С(СН 3)=СН 2 или СН=СН 2 и С 2 Н 5 .
3) Определим относительную ориентацию боковых цепей: два мононитропроизводных при нитровании дает только параизомер:

При нитровании продукта полного окисления – терефталевой кислоты – образуется только одно мононитропроизводное.

Биохимия

Задача 4 (биологический факультет). При полном гидролизе 49,50 г олигосахарида образовался только один продукт – глюкоза, при спиртовом брожении которой получено 22,08 г этанола. Установите число остатков глюкозы в молекуле олигосахарида и рассчитайте массу воды, необходимой для гидролиза, если выход реакции брожения – 80%.

N /(n – 1) = 0,30/0,25.

Откуда n = 6.
Ответ . n = 6; m (H 2 O) = 4,50 г.

Задача 5 (медицинский факультет). При полном гидролизе пентапептида Met-энкефалина были получены следующие аминокислоты: глицин (Gly) – H 2 NCH 2 COOH, фенилаланин (Phe) – H 2 NCH(CH 2 C 6 H 5)COOH, тирозин (Tyr) – H 2 NCH(CH 2 C 6 H 4 OH)COOH, метионин (Met) – H 2 NCH(CH 2 CH 2 SCH 3)COOH. Из продуктов частичного гидролиза этого же пептида были выделены вещества с молекулярными массами 295, 279 и 296. Установите две возможные последовательности аминокислот в данном пептиде (в сокращенных обозначениях) и рассчитайте его молярную массу.

Решение
По молярным массам пептидов можно установить их состав, пользуясь уравнениями гидролиза:

дипептид + H 2 O = аминокислота I + аминокислота II,
трипептид + 2H 2 O = аминокислота I + аминокислота II + аминокислота III.
Молекулярные массы аминокислот:

Gly – 75, Phe – 165, Tyr – 181, Met – 149.

295 + 2 18 = 75 + 75 + 181,
трипептид – Gly–Gly–Tyr;

279 + 2 18 = 75 + 75 + 165,
трипептид – Gly–Gly–Phe;

296 + 18 = 165 + 149,
дипептид – Phe–Met.

Эти пептиды можно объединить в пентапептид таким образом:

M = 296 + 295 – 18 = 573 г/моль.

Возможна также прямо противоположная последовательность аминокислот:

Tyr–Gly–Gly–Phe–Met.

Ответ .
Met–Phe–Gly–Gly–Tyr,
Tyr–Gly–Gly–Phe–Met; M = 573 г/моль.

Конкурс на химический факультет МГУ и в другие химические вузы в последние годы остается стабильным, а уровень подготовки абитуриентов растет. Поэтому, подводя итоги, мы утверждаем, что, несмотря на сложные внешние и внутренние обстоятельства, химическое образование в России имеет хорошие перспективы. Главное, что нас в этом убеждает, – неиссякающий поток юных талантов, увлеченных нашей любимой наукой, стремящихся получить хорошее образование и принести пользу своей стране.

В.В.ЕРЕМИН ,
доцент химического факультета МГУ,
Н.Е.КУЗЬМЕНКО,
профессор химического факультета МГУ
(Москва)

«Система химического образования в школе»

В определенный момент своей педагогической деятельности я поймала себя на мысли, что работа перестала меня радовать, приносить удовлетворение. Уроки проходят впустую, материал усваивается сложно, не всеми учащимися. Учащиеся стремятся получить лишь хорошую оценку, неважно какими путями. Сложившаяся ситуация меня не устраивала. Проанализировав свою деятельность, пришла к выводам:

Учиться трудно, учиться хорошо по – настоящему трудно, так как

Усложняются программы по предметам. Если 20 лет назад органическую химию учили только в 10 классе, было 10-летнее образование, в недалеком прошлом в 10 классе при 11-летнем образовании, сейчас органическая химия начинает изучаться в 9 классе.

Возрастают требования к уровню подготовки выпускника. Выпускники вынуждены сдавать ЕГЭ. Согласитесь, это сложнее сделать, чем сдать экзамен по билетам, да и 80 баллов выпускники набирают крайне редко, не говоря уже о 100 баллах.

Учителя тоже не всегда строят процесс преподавания в соответствии с требованиями современности. Обучение все еще остаётся традиционным.

Осознав сложившуюся ситуацию, пришла к выводу, пора что- то менять в подходах к преподаванию. Чтобы осуществить изменения на практике, необходимо было изучить теоретические вопросы преподавания, отобрать тот материал, который заинтересовал, подготовить дидактический материал, внедрить инновации, подвести итоги, сделать выводы.

Вся эта работа была начата и проведена с 2004 года. В этом году я прошла курсовую подготовку по теме «Личностно – ориентированный подход в обучении» под руководством Селивановой О.Г. , посещены лекции Русских Г.А. «Современный урок», изучен опыт внедрения личностно – ориентированного обучения в школах г. Яранска и Котельнича, изучен материал «Современные педагогические технологии».

Изучив и осознав данный материал, поняла, что он мне интересен, захотелось его использовать на практике. Четко определила цели и задачи своей педагогической деятельности в эти 6 лет.

Цель: Повысить результативность урока через использование методик и технологий личностно – ориентированного обучения.

Почему именно эта цель? Потому что я понимала, что выпускники будут конкурентноспособными, уровень подготовки их будет на достаточно высоком уровне, если материал будет усваиваться качественно на каждом уроке, постепенно, а не будет выучен за 2-3 дня до экзамена. Я сама была ученицей, студенткой, и прекрасно понимаю, что можно сделать вид умного внимательного слушателя и ничего не слышать на уроке. Став учителем, мне хотелось, чтобы дети слышали, понимали, учились на уроке, а не отсиживались. Чтобы достичь поставленной цели я определила следующие задачи:

Теоретическая подготовка по теме.

Отбор методов и приемов, которые я буду использовать.

Разработка комплекса КИМов и уроков средствами новых технологий.

Апробация разработанных материалов.

Подведение итогов, корректировка целей, задач.

Итак, изучив теоретический материал, я отобрала для использования в педагогической практике технологии:

1.проблемного обучения

2.УД

Методики:

Изучение уровня обученности

Изучения уровня обучаемости

Перевод учащихся с одного уровня обучаемости на другой

Усвоения ГОС

И ещё я отметила для себя, что урок должен строиться в модели современного урока, должны быть этапы: оргмомент, целеполагание, мотивация, актуализация, первичное усвоение, осознание и осмысление, закрепление, применение, контроль.

Отобранные мною методики легко ложились на современный урок, вписывались в его структуру.

На следующем этапе работы мне было необходимо разработать комплекс КИМов что и было сделано для 8 класса. Почти по всем темам разработаны:

1)Задания 1,2,3 уровня сложности, т. е. комплекс заданий для перевода учащихся с одного уровня обучаемости на другой.

2)По многим темам разработаны тесты достижений, или вопросы разноуровневые для контроля усвоения материала темы.

3) Небольшое количество уроков разработаны в рамках технологий: проблемного обучения и УД.

На следующем этапе разработанные материалы нужно было внедрить в практику, что и было сделано. Причем, когда данная работа проводилась, в одном из классов было 27 человек, класс был сложным по дисциплине, объем работы был достаточно велик. Апробируя данные подходы в обучении, пришла к выводу - данная система работы приносит результаты.

Таким образом, в моем представлении четко отразилась система преподавания, которая и получила название «Система химического образования в школе»

На каждом уроке я стараюсь придерживаться структуры современного урока. Причем для себя я выделила главный этап: контроль. Контроль усвоения новой темы. Может показаться, что это самый лёгкий этап урока. Что сложного, Дал задание учащимся - выполняйте. Но чтобы это этап прошел качественно, чтобы учащиеся показали, что материал усвоен, необходимо очень настойчиво и упорно трудиться в течение урока и не только учащимся, но и учителю. А учителю приходиться трудиться еще больше, так как необходимо разработать урок, продумать, предугадать.

И еще, после проведения контроля учитель четко представляет, усвоен материал, или нет. Если материал усвоен, значит нет смысла на следующем уроке проверять усвоение ГОС, можно давать задания, направленные на развитие учащихся, задания разного уровня сложности, от 1 к 10 типу первого уровня, от анализа к систематизации второго уровня, или третьего уровня, в зависимости от того на какой ступени развития стоит ученик.

На этапе контроля учащиеся получают оценку, она идет в журнал. Если оценка отрицательная, она не ставится, на следующем уроке у учащихся снова проверяется усвоение ГОС, и если оценка вновь отрицательная- она идет в журнал.

А сейчас о каждом этапе урока.

Целеполагание . Оно должно быть обязательно. Причем, лучше, если учащиеся сами будут определять цели и задачи. Тогда материал будет усваиваться осознанно.

Мотивация. Стараюсь найти моменты, которые доказывают, что это нужно самим ребятам, что в жизни с этим материалом они обязательно столкнуться, стараюсь заинтересовать содержанием, либо говорю, что в конце урока будет проверочная работа по новой теме. Внешняя мотивация тоже немаловажна..

Актуализация. Обязательно вспоминаем и озвучиваем те знания, которые будут необходимы для изучения новой темы.

Первичное усвоение, осознание и осмысление . На этих этапах материал звучит трижды, но в разных ракурсах: рассказ, работа с учебником, беседа и т.д.

Закрепление. Подводим итоги, делаем выводы.

Затем идет отработка ЗУН на этапе применения.

Последний этап – контроль . Часто в контроль включаю вопросы рефлексии.

Таким образом, на этапе изучения, осознания и осмысления, а так же на этапе контроля реализуется методика усвоения ГОС.

На этапе повторения материала реализуется методика перевода учащихся с одного уровня обучаемости на другой.

Методика определения уровня обучаемости применяется 1-2 раза в год, служит основанием для дифференциации.

Методика определения уровня обученности используется на уроках контроля усвоения знаний по теме.

Мое главное правило – спросить каждого ученика на каждом уроке. 1-2 устно, остальных письменно.

Конечно, такая работа является очень напряженной и ребята устают от постоянных проверочных, но пока другого выход я не вижу. Да и ребята сами понимают, что напряженная работа идет им на пользу. Однажды в конце урока, перед очередной проверочной работой я обратилась к ребятам со следующими словами: «Ребята, с нас, учителей, требуют очень много. Мы должны каждого ученика на каждом уроке научить на 3. Вот мы только что закончили изучать тему, как же мне узнать, усвоили вы ее или нет?» Одна девочка говорит: «Провести проверочную работу». Класс, конечно же, в восторг не пришел, но коль вывод был сделан самими ребятами, дальше мы стали писать проверочную работу.

Вполне резонно будет сейчас сказать, в чем заключается инновационная направленность моего опыта. Она затронула в целом всю структуру урока. Я, готовясь к уроку, просчитываю каждый его этап поминутно. Оргмомент - 1-2 минуты, повторение до 10 минут ит.д. Отслеживаю результаты у каждого ученика, использую методики личностно – ориентированного обучения.

Применяя данную систему образования я пришла к следующим результатам и выводам.

Готовиться к урокам стало сложнее, но есть реальный конкретный результат на каждом уроке у каждого ученика, и я его знаю.

Минимум материала способны усваивать на уроке все учащиеся, даже очень слабые, если они смотивированы на результат.

Успеваемость по предмету повысилась и поддерживается на уровне 100%.

Средний балл по предмету повысился с 3,5 до 3,9. Четко спланированная работа на уроке позволяет забыть о дисциплине, так как каждая минута расписана, нет времени на посторонние занятия.

Некогда заниматься списыванием, да и не у кого, если все учащиеся находятся на разной ступени развития и получают индивидуальные задания.

Накапливаются оценки в течение триместра, так как каждый ученик получает оценку на каждом уроке. Поэтому оценка итоговая за триместр объективная.

Так как материал усваивается на каждом уроке, учащиеся очень легко адаптируются при переходе в другое учебное заведение. По химии они не испытывают никаких затруднений.

Принимают участие в районных олимпиадах, занимают призовые места.

Выбирают химию для прохождения государственной итоговой аттестации в форме ЕГЭ. В 9 классе выбирают предмет для гос. аттестации даже слабые ученики.

Поступают в высшие учебные заведения с результатами ЕГЭ по предмету: Уральский лесотехнический университет, Пермская фармацевтическая академия, Марийский лесотехнический университет, Кировская сельскохозяйственная академия, Вятский государственный университет на бесплатной основе.


Источник информации: Методика преподавания химии. Учебное пособие для студентов педагогических институтов по химическим и биологическим специальностям. Москва. "Просвещение". 1984. (Глава IV, § 1 - § 4 . Содержание курса химии. С. 50 - 61).

Главы I (полностью), II (полностью) смотрите в разделе: http://сайт/article-1091.html

Главы III (полностью), IV (полностью) и V (полностью) смотрите в разделе: http://сайт/article-1090.html

Глава IV

§ 1. МЕСТО ХИМИИ КАК УЧЕБНОГО ПРЕДМЕТА В СИСТЕМЕ ВСЕОБЩЕГО СРЕДНЕГО ОБРАЗОВАНИЯ

Вопрос «чему учить?» — один из центральных в методике обучения химии. Содержание школьного курса химии определяется общими целями обучения, содержанием самой химической науки, значением химии и местом этого предмета в системе среднего образования.

Химия — предмет естественнонаучного цикла. Главное назначение этих дисциплин — формирование научного мировоззрения, знаний о природе, о методах ее познания. Школьный курс химии в синтезированном виде содержит краткие и обобщенные сведения из разных разделов химической науки, дидактически переработанные и последовательно изложенные в доступной для учащихся форме. Большую часть его содержания составляют основы химии.

Основы химии — это построенная и обобщенная на базе ведущих идей, научных достижений и теорий науки система общих знаний об элементах, веществах, процессах их превращений и методов их познания.

Современное содержание общего среднего образования и учебных предметов представлено четырьмя видами. Применительно к химии как учебному предмету это:

1) система теоретических, методологических и прикладных знаний основ химии и химической технологии. Эти знания обеспечивают общее химическое и политехническое образование, дают представление о химической картине природы;

2) система учебных умений и навыков соответствующая знаниям химии. Она обеспечивает учебную деятельность учащихся, применение знаний на практике;

3) накопленный практикой химического познания опыт творческой деятельности, необходимый для решения усложненных учебно-познавательных задач, для творческого подхода к овладению химией и применения знаний и умений. Это важный элемент в воспитании творческой личности;

4) система норм отношений к окружающей природе, к социальным явлениям химии, к поведению в природе и обществе. Она служит основой для выработки научного мировоззрения, природоохранительных убеждений, нравственности и их проявления на практике.

Наличие в школьной химии всех этих видов содержания является необходимым условием для выполнения общих целей обучения и реализации его важнейших функций.

Отобранное для изучения в школе содержание обучения оформляется в учебный предмет. Для этого оно согласуется с отведенным для его изучения временем и возможностями учащихся. В учебный предмет входит не все содержание обучения, а лишь его основная часть, подлежащая усвоению на уроках. Помимо содержания, учебный предмет включает аппарат усвоения и ориентировки (контрольные вопросы, упражнения и задачи, методические указания). В учебном предмете реализуются внутрипредметные и межпредметные связи, которые обеспечивают преемственность и обобщенность знаний и умений. Учебный предмет включает неорганическую и органическую" химию. Важным условием построения учебного предмета является его направленность на целевое раскрытие основных компонентов химического образования, на реализацию в единстве обучения, воспитания и развития учащихся. Учебный предмет отражается в программах по химии.

§ 2. НАУЧНО-ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ПОСТРОЕНИЯ КУРСА ХИМИИ

Mapксистско-ленинская теория познания — методологическая основа построения школьного курса. Она раскрывает закономерности и конкретные пути перехода от незнания к знанию. На основе важнейших законов и категорий материалистической диалектики в школьном курсе химии раскрываются и обобщаются понятия и законы, выявляются связи и отношения между теориями и фактами. В свою очередь, философские категории и законы, наполненные химическим содержанием, лежат в основе формирования научного мировоззрения учащихся, обеспечивают развитие понятийного мышления, диалектического подхода к изучению химических объектов, явлений, процессов.

Теорию обучения и воспитания составляют педагогические основы построения предмета. Теория обучения помогает понять общие цели обучения химии, показать место данного предмета в системе среднего образования и воспитания учащихся. Дидактические принципы определяют содержание и построение учебного предмета, а также пути его изучения.

В самом содержании обучения уже заложены пути его изучения (методы обучения, межпредметные связи, характер познавательной деятельности учащихся и пр.). Они находят отражение в последовательности расположения учебного материала, в разработке методов его изучения, в системе химического эксперимента (лабораторные опыты и практические занятия), а также в отборе упражнений и заданий для самостоятельной работы учащихся.

Психологические основы обучения и воспитания в сочетании с методикой определяют посильность содержания и изложение его на доступном для учащихся уровне. Психологические закономерности формирования знаний, умений, интеллекта лежат в основе преемственного развертывания содержания по годам и темам обучения с учетом «зоны ближайшего развития» учащихся. Психология усвоения знаний и умений и умственного развития учащихся учитывается при отборе содержания и методов его изложения.

Химическая наука составляет научно-теоретические основы отбора содержания и построения учебного предмета. В учебном предмете отражается не только система сложившихся в науке фундаментальных знаний и логика их формирования, но и современное состояние, перспективы развития науки. Поэтому учитель химии должен хорошо знать историю химии, ориентироваться в современных вопросах и включать сведения о достижениях и перспективах развития науки и производства в излагаемое им содержание обучения.
Химия достигла больших успехов в области теоретических и прикладных исследований строения веществ, кинетики химических реакций, в синтезе новых веществ и материалов, в управлении этими процессами. Осуществляется дальнейшее изучение тонкого строения веществ на основе квантовых представлений. Активно развивается направление, связанное с изучением макроструктуры веществ. Расширяется изучение неорганических полимеров, раз-
вивается химия твердого тела. Ученые интенсивно исследуют биохимические и геохимические явления. Больших успехов достигла химия клетки, химия жизни. Расширились возможности познания химии космоса и моря. Велики успехи современной химии в обла-.
сти - изучения динамики и разносторонности химических процессов. Дальнейшее развитие этих знаний связано с выявлением механизмов более сложных реакций, с созданием новых катализаторов, нахождением новых методов стимулирования химических процессов, с более полным использованием термодинамических и кинетических закономерностей в управлении реакциями. Одним из важнейших направлений в развитии химии по-прежнему остается определение новых перспективных синтезов веществ и материалов, с заранее рассчитанными свойствами. Это связано с совершенствованием химической технологии, с модернизацией производства, с поиском путей комплексной переработки сырья, способов защиты окружающей среды от вредных химических воздействий.

Особенности химического познания и тенденции его развития также находят отражение в содержании школьного курса. Они оказывают влияние и на построение курса и на методику его преподавания. Поэтому следует рассмотреть их подробнее. Для процесса химического познания характерно:

1.) изучение индивидуальности химических объектов, которая проявляется через качественные особенности их свойств и превращений;

2) отражение неограниченной изменчивости веществ, что ста¬ло одним из методологических принципов изучения химии;

3) познание внутренней активности и реакционной способности веществ, объяснение их на основе структурной, энергетической и кинетической теорий;

4) раскрытие взаимосвязи свойств веществ, их состава и строения;

5) качественное и количественное описание химических объектов в их единстве как отражение этой взаимосвязи;

6) изучение качественных скачков, происходящих под влиянием количественных изменений;

7) рассмотрение дискретности и непрерывности в организации веществ, в их взаимодействиях;

8) изучение функций веществ и частиц как следствий их структурной организации;

9) тесное увязывание научного познания с практикой, поиск рациональных синтезов и способов управления ими.

Теоретические знания в химии ведущие. В связи с усилением внимания к учению, к самостоятельному познанию учащихся большое место в учебном предмете занимают знания о методах и способах учебного познания. При их отборе учитывается, что химия пользуется экспериментальными, теоретическими и другими методами познания. В их совокупности химический эксперимент занимает ведущее место как основной метод и вид познания химии, с которыми тесно связана химическая технология.

В плане усиления методологической направленности содержания учебного материала ив определении последовательности его изучения необходимо учитывать закономерности химического познания:

1. В химии исследуется сначала связь свойств веществ с их составом, а уж потом изучается их зависимость от строения.

2. Познание в химии идет от предметного рассмотрения веществ и явлений в их статике к изучению динамики процессов, от представлений о дискретности веществ и процессов к представлению о единстве дискретности и непрерывности.

3. В познании вначале используют односторонние и наглядные модели веществ и процессов, затем абстрактные и разносторонние, постепенно усложняется процесс моделирования веществ, явлений и процессов.

Эти закономерности отражают диалектический путь познания химических явлений. Их учет в обучении приводит к изменению стиля мышления учащегося от составного к структурно-статическому, а от него к структурно-динамическому. Отражение логики и закономерностей химического познания в содержании учебного предмета и в обучении осуществляется на основе принципов дидактики и психологии формирования знаний.

В построении учебного предмета и в обучении четко выражены современные тенденции химического познания:

1) увеличение объема и емкости теоретических знаний, усложнение их структуры, усиление внимания к фундаментальным знаниям;

2) уточнение и углубление знаний о реальном мире и его закономерностей на разных уровнях структурной организации веществ;

3) усиление идейно-теоретического объяснения, обобщение прогнозирования, проблемное в познании;

4) усиление методологической и практической направленности знаний, межнаучного переноса методов познания;

5) повышение роли и функций условных знаков науки.

Наука позволяет отобрать важнейшие знания, отражающие ее основные стороны: теоретическую, методологическую, описательную и прикладную. Химическая наука — это источник содержания школьного предмета химии. Она его теоретическая основа.

Чтобы определить возможности науки в построении школьного курса химии, нужно рассмотреть соотношение науки и учебного предмета.

Учебный предмет тесно связан с наукой. Их содержание имеет ряд общих признаков:

1. И наука, и учебный предмет представлены системой развивающихся и непротиворечивых знаний о природных, искусственных и идеальных химических объектах, их связях, отношениях, взаимодействиях, о методах познания, а также о практическом применении результатов познания.

2. Наука и учебный предмет содержат одинаковые виды знаний: эмпирические (факты, представления, закономерности), теоретические (законы, теории, идеи, понятия). Все они направлены на описание и объяснение явлений природы, на познание окружающего мира, на практику.

3. В науке и учебном предмете для описания результатов химического познания используется единая международная система символики, номенклатуры, терминологии, физических величин.

4. Как и наука, учебный предмет использует характерные для химии методы познания: теоретические (теоретическое объяснение, расчеты, химическое моделирование и прогнозирование), логические (сравнение, аналогию, индукцию, дедукцию и др.), экспериментальные (химический эксперимент, наблюдение, описание, физические методы изучения веществ и др.).

Но наука и учебный предмет имеют ряд существенных различий:

1) по целям и направленности содержания. Школьный курс должен формировать личность учащегося. Он направлен на его химическое образование, воспитание и развитие. Наука же имеет целью познание, объяснение, преобразование окружающего мира в целях решения гностических и практических задач;

2) по объему информации. Наука постоянно пополняется новыми знаниями. Поступление информации в школьный предмет ограничено временем его изучения и возможностями учащихся. Доля научной информации в учебном предмете незначительна. С годами она будет еще меньше, но концентрированнее и обобщеннее;

3) по составу и отношению разных видов знаний. В учебном предмете прежде всего теоретические знания позволяют оптимизировать процесс обучения. В науке — новые факты и методы научного познания — источники ее дальнейшего развития. В школьный предмет включаются также знания, не характерные для науки и представляющие лишь педагогический интерес: повышающие мотивацию учения, интерес к предмету, занимательность его и др.;

4) по логике и структуре знаний. Химия представлена многими науками; школьный предмет — их синтезом. В науке результаты познания чаще всего оформлены в виде проблем, изложенных с современных позиций. .В учебном предмете знания поэтапно и генетически развиваются, что обусловлено возрастной психологией их усвоения;

5) по видам содержания. Наука представлена лишь знаниями. В учебном предмете, кроме знаний, есть и другие, не свойственные науке виды содержания (умения и навыки, опыт норм отношений и др.);

6) по использованию методов познания. Главная цель методов научного познания — воспроизведение ранее выделенного и описанного объекта для экспериментирования и его преобразования. Методы исследования варьируются, результаты познания неизвестны. В учебном предмете методы познания используются для изучения объектов и явлений, для формирования знаний о них, для осуществления учебно-познавательной деятельности учащихся. Ее методы определены целями и содержанием учебного познания, результаты его известны учителю. Кроме научных методов в упрощенном варианте, здесь используются дидактические методы изложения учебного материала и "учения (эвристическое изложение, выполнение упражнений, задач);

7) по уровню описания знаний. Для этого в науке активно используют математический аппарат и сложное моделирование. В учебном предмете математическое описание почти отсутствует, модели и языки науки упрощены.

Большое влияние на построение учебного предмета оказывают психолого-педагогические и методические факторы.

Наука — источник для отбора содержания обучения. Но она не дает еще ответа, какова должна быть структура учебного предмета, как расположить в нем учебный материал, чтобы он был доступен для усвоения и служил для обучения, развития и воспитания учащихся. Эти задачи решает методика обучения. Методический анализ научных знаний, их соотнесение с целями обучения и возможностями учащихся — непременное условие отбора содержания и построения учебного предмета.

Учебный предмет — это методически переработанное, качественно новое содержание основ наук, приспособленное для обучения и воспитания учащихся.

Переработка науки в учебный предмет, создание систематических курсов химии для средней школы — это первая задача построения предмета. Вторая — определение методических путей оптимальной реализации возможностей предмета в процессе обучения химии.

§ 3. ПРИНЦИПЫ ОТБОРА СОДЕРЖАНИЯ И ПОСТРОЕНИЯ ШКОЛЬНОГО КУРСА ХИМИИ

Отбор материала и построение курса химии для средней школы определяются требованиями дидактики. Среди них первое место занимают направленность содержания на реализацию целей обучения, установление единства содержания и процесса обучения.

Объективность отбора учебного материала и построения предмета обеспечивается их соответствием — важнейшим принципом дидактики и методики. Под принципами понимаются исходные положения, лежащие в основе построения и изучения предмета.

Принцип соответствия учебного материала уровню современной науки ведущий в отборе содержания. К признакам такого соответствия следует отнести приближение уровня учебного предмета современному состоянию науки, использова¬ние в учебном предмете ведущих научных идей и теорий, раск¬рытие в нем методов химического познания и его закономерностей, включение в него основных концептуальных систем знаний (о составе, о строении химических соединений, о химических процессах и пр.) с учетом изоморфного соответствия их структур научным, достоверность и современность отобранных фактов, диалектический подход к рассмотрению химических явлений, диалектическое развитие знаний.

Важное условие реализации этого принципа — системность знаний. Ее характеризует следующее: выделение в учебном материале фундаментальных знаний и умений, установление между ними взаимосвязей; обобщенный способ выражения знаний; концентрация знаний вокруг ведущих идей; раскрытие содержания с позиций наиболее общих теорий и законов; субординация теорий и понятий курсов; выделение химических закономерностей как важных системообразующих связей понятий.

Принципу соответствия учебного материала науке подчинены более частные принципы. Принцип ведущей роли теории в обучении выражен в приближении теорий к началу изучения курсов, в усилении идейно-теоретического уровня содержания, в усилении функций объяснения, обобщения, предсказания.

Принцип оптимального соотношения теории и фактов отражает необходимость обоснованного отбора фактов, установления связи между фактами и теориями, при ведущей роли последних. Фактам как единицам эмпирических знаний, дающих конкретное представление об окружающем мире веществ и химических реакций, отводится в обучении также большая роль в решении многих учебно-воспитательных задач. Особое значение имеют факты, обеспечивающие усвоение теорий, формирование понятий, доказывающие успехи науки и производства. Необходимо отличать факты фундаментальные, имеющие непреходящее значение для формирования понятий, для сравнений в химии (типические, по Менделееву, элементы, вещества — кислород, вода, метан, этиловый спирт и другие), и вспомогательные, временные, требующие частой смены в соответствии с требованием современности (новые продукты производств, открытия и др.).

На тесное соединение теории и фактов указывали великие русские химики А. М. Бутлеров, Д. И. Менделеев и использовали это положение как дидактический принцип при изложении материала в своих учебниках.

Принцип развития понятий предусматривает преемственное развитие важнейших понятий школьного курса на всем его протяжении. Преемственное раскрытие их содержания осуществляется в соответствии с ленинской теорией познания 1. Этот принцип предполагает расширение и углубление содержания понятий, установление и перестройку их связей при раскрытии новых знаний. Согласно этому принципу при переходе от одного теоретического уровня содержания к другому происходит переосмысление понятий, их обобщение и систематизация, установление межпонятийных связей. Отдельные понятия вводятся в более общие теоретические системы знаний. Принцип развития понятий подразумевает также усложнение форм их выражения: определений, терминов, символики. Вместе с понятиями обеспечивается взаимосвязанное развитие и обобщение соответствующих им спо¬собов деятельности.

Принцип разделения трудностей в содержании предполагает отбор и распределение учебного материала с учетом возрастных и психологических особенностей его усвоения. В соответствии с этим принципом сложность учебного материала должна нарастать постепенно. Концентрация теоретических вопросов в одном месте курса осложняет их усвоение и применение. Поэтому ведущие теории школьных курсов равномерно распределены успехи науки и производства. Необходимо отличать факты фундаментальные, имеющие непреходящее значение для формирования понятий, для сравнений в химии (типические, по Менделееву, элементы, вещества — кислород, вода, метан, этиловый спирт и др.), и вспомогательные, временные, требующие частой смены в соответствии с требованием современности (новые продукты производств, открытия и др.).

* См.: Лени н В. И. Поли. собр. соч., т. 29, с, 153—154.

Без организующей и направляющей роли теории в изучении фактов, без их теоретического обобщения невозможно объяснить суть изучаемого, сформировать требуемые знания, обеспечить научное миропонимание.

На тесное соединение теории и фактов указывали великие русские химики А. М. Бутлеров, Д. И. Менделеев ц использовали это положение как дидактический принцип при изложении материала в своих учебниках.

Установление взаимосвязи теории и фактов — важный фактор реализации принципа научности в обучении. Повышение теоретического уровня предмета связано с сокращением фактов. В реализации принципа оптимального соотношения теории и фактов важно, чтобы для изучения каждого принципиального вопроса число фактов было минимальным, но достаточным для понимания сути его. Излишек фактов уводит от главного, недостаток ведет к формализму, к искажению химической картины природы.

Принцип развития понятий предусматривает преемственное развитие важнейших понятий школьного курса на всем его протяжении. Преемственное раскрытие их содержания осуществляется в соответствии с ленинской теорией познания. Этот принцип предполагает расширение и углубление содержания понятий, установление и перестройку их связей при раскрытии новых знаний. Согласно этому принципу при переходе от одного теоретического уровня содержания к другому происходит переосмысление понятий, их обобщение и систематизация, установление межпонятийных связей. Отдельные понятия вводятся в более общие теоретические системы знаний. Принцип развития понятий подразумевает также усложнение форм их выражения: определений, терминов, символики. Вместе с понятиями обеспечивается взаимосвязанное развитие и обобщение соответствующих им способов деятельности.

Принцип разделения трудностей в содержании предполагает отбор и распределение учебного материала с учетом возрастных и психологических особенностей его усвоения. В соответствии с этим принципом сложность учебного материала должна нарастать постепенно. Концентрация теоретических вопросов в одном месте курса осложняет их усвоение и применение. Поэтому ведущие теории школьных курсов равномерно распределены по годам обучения. После каждой теории помещен материал, позволяющий подтвердить, развить и конкретизировать ее положения, вывести следствия, активно использовать теорию на практике. Почти все ведущие теории размещены в начале курсов. Практика обучения показала, что приближения теорий к началу курса, увеличение теоретических вопросов в объеме предмета не затрудняет, а облегчает его изучение, так как усиливает объяснение и обоб¬щение фактов и понятий. Принцип разделения трудностей предполагает чередование теоретических вопросов с эмпирическим материалом, абстрактного с конкретным. Наиболее сложны для усвоения абстрактные понятия, особенно если они мало подкреплены экспериментом и наглядностью. К таким относятся понятия о состоянии электронов в атоме, об электроотрицательности, о степени окисления и др. Их доступность может возрасти за счет доказательного объяснения и использования комплекса моделей.

Надо учитывать, что познавательные возможности современных детей резко возросли. Раньше изучение электронной теории было сложно даже для восьмиклассников, она изучалась в IX классе. Сейчас эта теория передвинута к началу восьмого класса.

Сложность учебного материала обусловлена его содержанием, структурой, формой и способами" его раскрытия. Так электронная теория сложна для усвоения по своему содержанию и структуре. Ее положения и следствия недостаточно четко сформулированы в учебнике. Практика показывает, что четкое определение исходных понятий, основных положений, следствий, эвристических возможностей теории существенно облегчает ее усвоение и применение.

Понятия простого и сложного часто не совпадают в учебном предмете и в науке. Изучение многих сложных по структуре веществ, но доступных чувственному восприятию легче для учащихся, чем элементов и простых веществ. Принцип разделения трудностей предусматривает движение знаний от простого в познавательном отношении к сложному, от знакомого и близкого к менее знакомому, более обобщенному и глубокому. Сложный и малодоступный материал снижает интерес к химии, порождает неуспеваемость. Но опасен и облегченный. Он вызывает скуку, леность ума.

Поэтому важно раскрыть учебный материал на оптимальном уровне трудности. Ученик должен самостоятельно усваивать материал при минимальной помощи со стороны учителя. Обучение надо также вести с нарастающей сложностью. Требование постепенного усложнения содержания касается не только знаний, но также форм и методов его изложения.
Принцип распределения трудностей предусматривает связь с ранее изученным, установление разнообразных внутри предметных и межпредметных связей, своевременное обобщение и систематизацию знаний. Их облегчают разносторонний подход к анализу вопросов, схемы классификации (элементов, веществ, реакций, технологических процессов, производств и др.).

Большая роль принадлежит схемам, отражающим генетические связи, круговороты веществ в природе, сравнительным и обобщающим таблицам. Облегчает понимание учебного материала нагляд¬ность, использование методических приемов: мотивации, акцентирования на главном, схематического выражения структуры знаний, замена сложных для усвоения понятий более доступными представлениями, обучение способам запоминания; установления межпредметных связей, анализ формул и уравнений и др.

Линейно-ступенчатое построение современных курсов химии для средних школ: — фактор создания системных, взаимосвязанных знаний, равномерного распределения сложного материала. Оно предусматривает последовательное и поэтапное раскрытие и постепенное усложнение теоретического материала курса.

Принцип историзма также является исходным в отборе содержания и в построении учебного предмета. Под историзмом подразумевается всякое проявление в учебном содержании закономерностей, которые подчеркивают, что достижения современной химии — это результат длительного исторического пути ее развития, продукт общественно-исторической практики.

Использование принципа историзма подразумевает раскрытие учебных знаний в трех аспектах: ретроспективном, современном и перспективном, которые выступают как ступени единого развивающегося процесса познания. Раскрытие исторических закономерностей помогает учащимся воспринять химию как систему развивающихся знаний, осознать безграничность химического познания. История науки дает ответы на многие методические вопросы: как формировать знания, какие целесообразны приемы и методы, чтобы избежать неверных суждений и исторических ошибок учащихся типа «сахар тает в воде», «кислота кипит, если бросить в нее кусочек металла», «электролит диссоциирует в воде под действием электрического тока» (ошибка Фарадея) и др.

Психология доказала, что в обучении сохраняются основные этапы исторического процесса познания. Пропуски отдельных из них затрудняют учение. В методике химии известны попытки изучать ионные уравнения, минуя молекулярные. Резкое снижение знаний учащихся заставило отказаться от такого подхода. Раскрытие большинства понятий в школьном предмете осуществлено с сохранением важнейших исторических этапов становления этих знаний в науке (понятия об элементе, о валентности, о кислотах и основаниях и др.).

Расположение теорий в школьном курсе химии также отражает логику исторического процесса познания: классические теории и законы — периодический закон — электронная теория и т. д. Однако применение исторического подхода не означает, что каждую теорию можно и надо раскрывать в историческом плане. В ходе утверждения многих теорий было немало ошибок, неоправданно сложных путей познания, зигзагов. Вести учащихся ими — значит терять дорогое учебное время, перегружать их память и закреплять в ней исторические ошибки. Нет необходимости раскрывать историю закона постоянства состава и вести учеников извилистой дорогой науки, включать их в спор между Бертолле и Прустом, трактовать его эмпирически, потому что атомно-молекулярное учение утвердилось в науке несколько позже. В данном случае будет целесообразно на основе экспериментального анализа и синтеза воды кратко изложить суть закона и обосновать его с помощью атомно-молекулярного учения. Неоправданно в историческом плане излагать теорию электролитической диссоциации, так как это привело бы учащихся к ошибке Фарадея и механистическому пониманию процессов диссоциации. Поэтому в школьном курсе эту теорию излагают с современных позиций, а исторические данные используют потом в качестве справочного материала.

Исторический подход возможен там, где формирование знаний в науке соответствовало диалектике познания (закон сохранения массы веществ, теория строения атома, периодический закон и др.). Рассмотрим примеры. В содержании материала о законе сохранения массы веществ включены исторические опыты, дана трактовка закона в выражении ее творца М. В. Ломоносова, показаны методы, используемые при его открытии, значение работ М. В. Ломоносова и роль законов в познании природы.

Из двух признанных подходов — исторического и логического — к раскрытию периодического закона в действующей программе по химии использован первый, т. е. на основе сопоставления химических фактов по Менделееву. Строение атома привлекается затем для объяснения причин периодичности. Такой подход позволяет на примере принципиального вопроса показать роль фактов в научном открытии, творческую лабораторию ученого, его научный подвиг, эвристическую силу закона. Исторический подход не означает строгого следования за историей. Его использование согласуется с более частным принципом методики — соотношения исторического, логического и дидактического. Согласно ему историческое подается учащимся в логически выпрямленном, обобщенном и дидактически переработанном виде. Так в учебный материал об атомно-молекулярном учении включены сведения об истории зарождения и об утверждении этого учения, показан вклад М. В. Ломоносова, Д. Дальтона. Однако в изложении знаний об атомных массах элементов не отражен длительный и трудный путь Д. Дальтона к определению «весов атомов», его ошибки в этом вопросе. В содержании дана лишь краткая, обобщенная и упрощенная информация, раскрывающая суть учения, его основные положения, значение данной теории для развития науки, роль ученых в утверждении ее основных положений.

Исторический материал широко привлекается для мотивации учения, для возбуждения интереса учащихся к предмету, для показа методов научного познания. Исторические факты, включенные в основное содержание предмета, помогают показать силу и могущество науки, ее постоянную борьбу с религией. Биографии ученых, сведения об их научной и общественной деятельности способствуют нравственному воспитанию учащихся.

Материал о жизни и деятельности русских, в том числе советских, ученых используют для патриотического воспитания, для показа их приоритета в открытии ряда фундаментальных законов и явлений, в решении стратегически важных практических вопросов (М. В. Ломоносов, Д. И. Менделеев, А. М. Бутлеров, Н. Н. Зинин, В. В. Марковников, С. В. Лебедев, Н. Д. Зелинский, Н. Н. Семенов и др.). Большое значение имеет исторический материал для интернационального воспитания. Для этого в содержание курсов включены сведения о зарубежных ученых (Д. Дальтон, А. Авагадро, С. Аррениуса, М. Бертло, супруги Кюри и др.), позволяющие отразить международный характер химической науки.

Цели использования исторического материала в учебном предмете — показ закономерностей исторического познания, выбор в качестве оптимальных исторических путей формирования знаний, вооружение учащихся методами творческой деятельности ученых, подтверждение и иллюстрация теорий и законов химии, создание проблемных ситуаций, активизация деятельности учащихся, атеистическое и нравственное воспитание учащихся.

Формы использования исторического материала разные: в виде исторического подхода, в форме отдельных сведений или исторического эксперимента, в форме методов познания химии и творческой лаборатории ученых.

Принцип политехнизма определяет тесную связь учебного материала с жизнью, с практикой коммунистического строительства, с подготовкой учащихся к труду. Для оптимальной реализации этого принципа в обучении учебный предмет должен включать:

1) основы химического производства;

2) систему основных технологических понятий и конкретные производства;

3) сведения прикладного характера, отражающие связь химии с жизнью, науки с производством, их достижения и направления дальнейшего развития;

4) систему знаний, раскрывающих сущность и значение хи¬мизации народного хозяйства как важного фактора научно-технического прогресса;

5) сведения об охране природы средствами химии;

6) учебный материал, позволяющий ознакомить с массовыми химическими профессиями, осуществить профориентацию.

Основы современной науки составляют базу для раскрытия политехнического содержания. Только его системное изложение может достичь целей политехнического образования. В раскрытии политехнического содержания важно использовать исторический и сравнительный подходы, позволяющие показать успехи отечественной химической промышленности и химизации народного хозяйства, достигнутые в годы Советской власти.
Принцип идейной направленности содержания предмета выражается в том, чтобы оно носило воспитывающий характер. Содержание школьного курса химии включает в себя факты и диалектико-материалистические закономерности развития природы, материал, отражающий политику партии по ее преобразованию. Научность содержания предмета воедино сливается с коммунистической идейностью знаний, партийным подходом к их изложению и оценке. Коммунистическая идейность и партийность содержания школьного предмета выражается в последовательном и конкретном раскрытии на основе межпредметных связей мировоззренческих идей, норм коммунистической нравственности, политики партии и правительства в области химизации народного хозяйства, выполнения Продовольственной программы, в области развития науки и техники. Этот принцип обеспечивает показ несостоятельности идеалистических взглядов на природу и общество, разоблачение антинародной политики империалистических государств, наращивающих химическое, бактериальное, нейтронное, ядерное оружие. Он предусматривает разоблачение суеверий и религиозных взглядов.

Повышению идейно-политического уровня содержания способствует включение в него доступных для понимания учащихся положений марксистско-ленинской теории, фрагментов из документов партии и правительства, из трудов классиков марксизма-ленинизма.

§ 4. СОДЕРЖАНИЕ КУРСА ХИМИИ

Содержание знаний в соответствии с задачами обучения определяется уровнем развития науки. В них в первую очередь выделяются основные объекты химии. Предметом познания химии являются вещества как вид материи со всем многообразием их превращений, связанных с особенностями химической формы движения. Школьный курс химии образуется двумя основными системами знаний - системой знаний о веществах и системой знаний о химических реакциях. Эти знания отбираются в соответствии с принципами построения школьного курса химии и целями обучения.

Вопрос о выборе концепции построения школьных курсов химии в разных странах решается по-разному. В большинстве стран, в том числе в СССР, за основу взята структурная концепция, выделяющая в качестве главной систему знаний о веществе, зависимости свойств веществ от их строения. Она стала ведущей идеей раскрытия учебного материала в курсах неорганической и органической химии в средней школе.

Временные рамки и познавательные возможности учащихся заставляют из необозримого многообразия веществ выбрать для изучения немногие. Основой для их выделения будет познавательная и практическая значимость. По этому признаку отбираются следующие вещества:

1) имеющие большое познавательное значение. На их основе формируется система понятий, создается фактологическая база для изучения теорий (водород, кислород, вода, некоторые металлы и неметаллы, типичные оксиды, кислоты, основания, соли);

2) имеющие большое практическое значение (минеральные удобрения, иониты, мыла, синтетические моющие вещества и др.);

3) играющие важную роль в неживой и живой природе (соединения кремния и кальция, жиры, белки, углеводы и др.);

4) на примере которых можно дать представление о технологических процессах и химических производствах (аммиак, серная и азотная кислоты, этилен, альдегиды и др.);

5) отражающие достижения современной науки и производства (катализаторы, синтетические каучуки и волокна, пластмассы, искусственные алмазы, синтетические аминокислоты, белки и др.).

Круг этих веществ ограничен, но позволяет на примере типичных представителей раскрыть закономерности состава, строения, свойств, общие для данного класса веществ, показать прикладную сторону химии.

Как на примере небольшого числа веществ показать их многообразие в природе и свойственные им закономерности бытия?

Решить эту сложную задачу помогает учение о химических элементах. Из сравнительно небольшого числа известных в настоящее время химических элементов образованы миллионы простых и сложных веществ.

Количество химических элементов, включаемых для более или менее подробного изучения в школьный курс, весьма ограниченно. Прежде всего это элементы малых периодов, т. е. типические (как называл их Д. И. Менделеев). Кроме того, изучают некоторые элементы глазных (А) и некоторых «побочных» (В) подгрупп больших периодов, имеющие большое практическое и познавательное значение.

Изучение элементов и их свойств дает разгадку многообразия образованных ими веществ, подчиненность их общим закономерностям состава и строения. Не случайно Д. И. Менделеев писал: «Вся сущность теоретического учения в химии лежит в отвлеченном понятии об элементах» Величайшим обобщением знаний об элементах является периодический закон. В нем отражена идея развития элементов, периодические закономерности изменения состава, строения, свойств элементов и образованных ими веществ. Графическое выражение закона - периодическая система химических элементов - служит теоретическим обобщением и естественной классификацией всех знаний об элементах. Она позволяет вскрыть единство природы элементов и образованных ими веществ во всем их многообразии. Периодический закон и периодическая система, раскрываемые в свете электронной теории, являются теоретической основой школьного курса химии, а потому включаются в учебный предмет и занимают в нем центральное место.

Для раскрытия сущности периодического закона в школьном курсе химии необходима система первоначальных химических знаний. Сюда входят атомно-молекулярное учение, первоначальные химические понятия, знания конкретных веществ (кислорода, водорода, воды), понятия о важнейших классах неорганических соединений. Это отодвигает изучение периодического закона от начала курса. В последние годы удалось заметно сократить этап предварителього накопления знаний путем их более строгого отбора и осуществления межпредметных связей. В этом нашло отражение закономерное развитие школьных программ в направлении приближения теории к началу обучения.

Первоначальные химические знания, необходимые для усвоения периодического закона, периодической системы и электронной теории, составляют содержание курса химии седьмого класса. Это по существу пропедевтический курс классической химии, содержащий описательный фактический материал с необходимыми и доступными учащимся обобщениями на базе атомно-молекулярного учения.

В курсе восьмого класса периодический закон и периодическая система раскрываются на их физической основе - электронной теории, хотя предварительно к пониманию закона учащихся подводят путем сравнения и анализа химических фактов. Первоначальные сведения о строении атома ученики получают в курсе физики. В курсе химии они уточняются, пополняются квантово-механическими представлениями о состоянии электронов в атоме и используются для раскрытия физического смысла закона периодичности, для объяснения структуры периодической системы. Чтобы полнее использовать затем познавательные возможности периодической системы для раскрытия зависимости свойств веществ от их строения, в школьный курс включено понятие о химической связи (об ее природе, типах связи, механизмах ее образования, влиянии на свойства веществ). В соответствии с этим введены новые характеристики элемента - относительная электроотрицательность и степень окисления; существенно развивается и приобретает новое качество первоначальное понятие о валентности. Для изучения структурной организации веществ (твердых тел) включено понятие о кристаллических решетках и их типах. Совокупность этих знаний позволяет обоснованно раскрыть причинно-следственные связи между строением и свойствами веществ.

Вторая система школьного курса химии - учение о химическом процессе. Главное в этой системе - знания об основных типах химических реакций, закономерности их протекания и способы управления процессами. Для их изучения отбирают наиболее типичные реакции, протекание которых не имеет кинетических затруднений, а их сущность понятна учащимся. Эмпирические знания о химических реакциях помещаются в самое начало курса химии. Их развитие протекает параллельно развитию знаний о веществе, приобретая более теоретический характер. Закон сохранения массы веществ способствует раскрытию количественной стороны реакций. Для ее более глубокого понимания и отражения практического значения введены расчеты по формулам и уравнениям. Количественные отношения при химических реакциях раскрываются и на основе других стехиометрических законов, в том числе закона Авагадро применительно к объемным отношениям между газами. Здесь дано понятие о моле как химической единице количества вещества. Изучаемые далее элементы термохимии позволяют обобщить знания о количественных отношениях в химии с позиций всеобщего закона сохранения массы и энергии.

Наиболее полное развитие учение о химической реакции получает на основе электронной теории. Понятия об электроотрицательности и степени окисления, о химической связи позволяют параллельно с их формированием раскрыть сущность окислительно-восстановительных реакций и дать представление о механизме реакции. Развитие этих знаний осуществляется далее при изучении галогенов. Этой темой начинается систематический курс неорганической химии, насыщенный фактическим материалом (об элементах, их соединениях, их реакциях), развивающий и конкретизирующий важнейшие химические теории (периодический закон, строение веществ, механизмы химических реакций и управление ими). При изучении элементов VI—V групп главных подгрупп знания учащихся о химических процессах обогащаются кинетическими понятиями о скорости химических реакций, о катализе, о химическом равновесии.

Теория электролитической диссоциации представляет более высокий уровень познания веществ и химических реакций. На ее основе следует показать новые стороны проявления периодического закона, обобщить материал о классах неорганических соединений, о химических реакциях, протекающих в водных растворах, раскрыть их закономерности, углубить сущность обменных и окислительно-восстановительных процессов.

При изложении материала о систематике элементов и образованных ими веществ уже больше внимания уделяется их индивидуальности в единстве с рассмотрением их общих свойств. К раскрытию этого материала применяется преимущественно дедуктивный подход с необходимыми элементами индукции. Большое место занимает прикладной материал.

Первыми рассмотрены неметаллы. Сначала дано общее представление о группе и положении элементов в периодической системе, затем более подробно охарактеризованы один или два важнейших элемента главной подгруппы и по аналогии с ними более кратко разобраны другие. В заключение показана общая характеристика данной группы элементов.

Изучение металлов начинается с их общих свойств. Электронная теория обогащается здесь понятиями о металлической связи и особенностях кристаллической решетки металлов, представлениями о сплавах, о зависимости свойств от структуры. Электрохимический ряд напряжений и выраженные в нем закономерности можно использовать для прогнозирования реакций металлов. На этой основе рассмотрен электролиз солей и его применение в технике, коррозия металлов и борьба с ней.

После общих свойств металлов следует их систематика. Принципы ее изучения те же, что и систематики неметаллов. В основном представлены металлы главных подгрупп. Несколько сокращено ознакомление f-элементами. Традиционно изучаются железо и его соединения. Из-за сложности усвоения сокращен сейчас материал о хроме и его соединениях. Предусмотрены лишь в общем виде сведения о строении атомов, сравнительная характеристика состава и свойств их оксидов и гидроксидов с разной степенью окисления.

В содержание систематического курса химии включены политехнические знания. Материал с политехническим содержанием отобран в соответствии с важнейшими направлениями развития современной промышленности: освоением новых источников сырья, заменой устаревших производственных процессов более современными, широким использованием научных принципов производств. В этом плане важно не знание большого количества конкретных производств, а понимание общих научных основ химического производства, его идей, принципов, направлений технического прогресса.

Политехнический материал отбирается на основе следующих принципов:

1. Связь политехнического содержания с основами наук.

2. Выделение в качестве ведущих знаний основных технологических понятий и принципов химического производства.

3. Раскрытие их на материале конкретных производств, обеспечивающих современное представление о химической промышленности.

4. Отбор производств, отвечающих требованиям современности и народнохозяйственной важности, позволяющих познакомить учеников с передовой технологией и техникой.

5. Концентрация производственного материала в определенных разделах курса, чтобы средствами химии показать решение крупных народнохозяйственных проблем.

6. Наглядность политехнического материала.

7. Исторический подход к его изучению, позволяющий показать развитие промышленности в условиях социалистического общества. Современные технологические процессы, научные принципы производства раскрываются на основе физико-химических закономерностей, что позволяет самостоятельно определять оптимальные параметры ведения химических процессов, направления их интенсификации. Для изучения в школе отбирают производства, относящиеся к основной химической промышленности (производства серной и азотной кислот, аммиака и некоторых минеральных удобрений), из промышленности органического синтеза (производство этанола и полимерных материалов). Кроме собственно химических, рассматривают и нехимические производства, позволяющие показать направления химизации народного хозяйства и представить химию как производительную силу общества (производства чугуна, стали, алюминия, химической переработки нефтепродуктов, газов, каменного угля и др.). В процессе раскрытия этого материала отражаются связи: наука - производство - общество, влияние развития химической промышленности на экологию природы и проблемы ее охраны. Учитывается возможность использования политехнического материала для профориентации учащихся и их воспитания.

Знания, полученные и обобщенные в курсе неорганической химии служат основой изучения курса органической химии. Факторами преемственности этих курсов будет структурная теория, отражение взаимосвязи между свойствами веществ и их строением и сравнение химии кремния и углерода. Поскольку основная система химических понятий уже сформирована, курс органической химии начинается теорией химического строения, что усиливает дедуктивный подход в обучении, объяснение и прогнозирование знаний. Основные положения теории А. М. Бутлерова раскрываются с опорой на понятие «валентность» и вводимое здесь понятие «изомерия». В основу построения этого курса положена идея генетического развития органических веществ от простых по составу и строению углеводородов до сложных белков. Генезис веществ выражается в последовательном движении знаний от углеводородов к классам кислородсодержащих, а от них к классам азотсодержащих веществ. Первичные объекты изучения - предельные углеводороды - непосредственно связаны с неорганическими веществами, просты по составу, что позволяет при их рассмотрении значительно пополнить теорию строения электронными и пространственными представлениями. Эти представления развиваются далее при изучении непредельных и ароматических углеводородов и их производных. Раздел о кислородсодержащих соединениях начинается с класса спиртов. Здесь введено важное понятие о функциональной группе как наиболее реакционно-способной части молекулы; теория химической связи пополняется представлениями о водородной связи. В последующем электронные и структурные представления развиваются на примере новых веществ, пополняются знания о взаимном влиянии атомов в молекуле.

Подход, применяемый к раскрытию материала об отдельных классах органических соединений, сходен с тем, который был использован при изложении групп элементов. В основе раскрытия признаков класса лежит понятие о гомологии. Оно позволяет выводы, сделанные при рассмотрении одного-двух гомологов, перенести на весь ряд, затем вывести общую формулу гомологического ряда, определить присущие ему закономерности, дать номенклатуру соединений.

Менее четко использована гомология при изучении жиров, углеводов и белковых веществ. Здесь не даны общие формулы рядов, кроме аминов, а только подчеркивается аналогия свойств. При изложении материала об этих веществах усилены элементы биохимии с учетом достижений и значения этой науки. Их рассмотрение осуществляется с опорой на знания биологии. При изучении аминокислот раскрывается их двойственная природа, а при характеристике белков - их первичная, вторичная и третичная структура, так как именно эти знания обеспечивают понимание их свойств и биологических функций. Учебный материал о них завершается отражением успехов науки в изучении и синтезе белков.

Расширение знаний о химическом процессе в органической химии не столь интенсивно по сравнению с учением о веществе. Но несколько углубляется представление о механизмах реакций, о катализе. Этот материал тесно увязан с политехническим содержанием и изучением производств. Другим звеном связи с политехническим содержанием служат способы получения органических веществ и прежде всего тех, которые лежат в основе промышленных синтезов. В наш век полимеров учащиеся средней школы получают необходимые сведения о высокомолекулярных соединениях: пластмассах, каучуках, химических волокнах. В целях более экономного размещения этих знаний в программе общие понятия о высокомолекулярных соединениях даны при изучении непредельных углеводородов, а знания о конкретных представителях полимеров рассредоточены по классам органических соединений. В конце предусмотрено обобщение учебного материала по органической химии.

Содержание курсов неорганической и органической химии раскрывается на основе преемственных (перспективных) и ретроспективных предметных и межпредметных связей, которые устанавливаются на уровне фактов, понятий, идей, теорий, методов и т. д. В последние годы усилены межпредметные связи с курсами биологии, физики, математики, обществоведения, географии, что создает хорошие условия для обобщения знаний и умений, для их переноса, для формирования научной картины мира и мировоззрения учащихся.

К важным компонентам содержания обучения относятся умения и навыки. Они необходимы для учебно-познавательной деятельности и развития учащихся. В содержании обучения предусмотрены необходимые для овладения основами химии умения по предмету. По характеру деятельности они могут быть разделены на шесть взаимосвязанных групп:

1) организационно-предметные: умения планировать эксперимент, ход решения задач, самостоятельную работу с книгой, готовить рабочее место в кабинете и ликвидировать последствия опытов и др.;
2) содержательно-интеллектуальные: умения, связанные с усвоением, преобразованием и применением теоретических знаний и методов познания, с установлением внутрипредметных и межпредметных связей;
3) информационно-коммуникативные: умения извлекать учебную информацию при слушании и чтении химических текстов, при работе со справочниками, таблицами, схемами по химии, при использовании аудиовизуальных средств, умение общаться на языке химической науки, перекодировать словесную информацию на язык номенклатуры, терминов, символов и наоборот;
4) практические умения: выполнять лабораторные операции и опыты, собирать и разбирать приборы, оформлять результаты эксперимента и теоретического познания с помощью графики и др.;
5) расчетные умения: выполнять расчетные операции, решать химические расчетные задачи;
6) оценочные умения: дать оценку имеющимся знаниям, методам познания, изучаемым явлениям с позиций поставленных задач. Применить усвоенные нормы отношений к природным и социальным явлениям химии, аргументировать свои ответы, отстаивать свои позиции.
Школьный курс химии завершается обзорным теоретическим обобщением и систематизацией знаний по неорганической и орга¬нической химии с целью уточнения картины мира, введения полу¬ченных в химии знаний и умений в общую систему естественнона¬учного содержания. Велика роль межпредметного обобщения, классификаций, обобщающих схем, мировоззренческих выводов и объективных оценок изученного материала учащимися.

§ 5. СТРУКТУРА ШКОЛЬНОГО КУРСА ХИМИИ

Учебный предмет характеризуется целостностью, единством и внутренней взаимосвязью всех видов знаний и всех разделов предмета, т. е. имеет определенную структуру.

Под логической структурой учебного курса следует понимать систему внутренних связей между основными видами знаний и всеми структурными компонентами содержания.

На структуру школьного курса химии оказывают влияние идеи и подходы, к его построению, состав и логика его содержания, современные тенденции развития химического образования. При определении структуры предмета необходимо учитывать принципы системности, последовательности и преемственности в развитии знаний. К структуре курсов предъявляются следующие требования:

1. Четкое выделение системы основных теоретических знаний.

2. Дидактически обоснованная последовательность учебного материала.

3. Оптимальность содержания и структуры учебного материала для сознательного и системного усвоения знаний и умений.

Структурирование содержания школьного курса предполагает выделение в нем главного, фундаментального, т. е. ведущих идей, теорий, законов, общих понятий,

Химию изучают четыре года: в VII - IX классах - неорганическая, в X классе - органическая химия. В VII классе (2 ч в неделю, 68 ч) обобщаются пропедевтические знания, формируется система первоначальных понятий, накапливается фактологический материал о веществах и реакциях, обобщаются знания об основных классах неорганических соединений. В курсе VIII класса (2 ч в неделю, всего 68 ч) изложены количественные отношения в химии, раскрыты периодический закон и периодическая система Д. И. Менделеева, химическая связь и строение веществ, которые затем конкретизируются при изучении групп галогенов и кислорода. В за-вершении курса рассмотрены основные закономерности химических реакций и производство серной кислоты. В IX классе (3 ч в неделю, всего 102 ч) изучают теорию электролитов и затем раздел систематики элементов "(неметаллы и металлы). В этот материал включены знания о химических производствах в металлургии. Курс IX класса завершается обобщением знаний по неорганической химии. В X классе на изучение органической химии отведены 3 ч в неделю, всего 78 ч. Курс начинается теорией химического строения органических веществ. Затем дедуктивно изучают классы соединений в последовательности: углеводороды, кислородсодержащие, азотсодержащие вещества. Попутно раскрывается ряд теоретических вопросов и политехнические знания. Завершает курс обобщение знаний. Развитие знаний по горизонтали и вертикали обеспечивают внутрипредметные и межпредметные связи.

Научно-технический и социальный прогресс, изменение требо-ваний к школе, достижения теории и практики обучения - движущие силы смены и совершенствования программ и учебников.

Анализ и обобщение исторического процесса развития учебного предмета дал член-корреспондент АПН СССР Л. А. Цветков. Коренная перестройка содержания и структуры школьной химии была в начале 70-х годов нашего века как результат модернизации химического образования во многих странах. В СССР она была еще связана с введением всеобщего среднего образования. В принятых в то время программах и учебниках был существенно повышен научно-теоретический и политехнический уровень содержания, благодаря чему возросло качество знаний и развитие учащихся, усилилась их познавательная активность. Вместе с тем были выявлены серьезные недочеты в знаниях и умениях учащихся, обусловленные особенностями построения программ и учебников. Они неоднократно обсуждались на страницах журнала «Химия в школе». В обобщенном виде эти недочеты были выражены в постановлении ЦК КПСС и Совета Министров СССР «О дальнейшем совершенствовании обучения, воспитания учащихся общеобразовательных школ и подготовке их к труду» (1977) и в Отчетном докладе на XXVI съезде КПСС. В соответствии с этими документами осуществлена перераработка программ и учебников по химии.
(Печатается с сокращениями - А.В. Краснянский)

Выполнила: учитель

МОУ « Ново-Выселская СОШ»

Шаханова С.В.


Содержание:

I. Введение

II а)Проблемы и пути развития школьного курса химии


новые учебники по химии

VI. Литература

I. Введение

Вопрос о том, чему должна учить химия в школе тесным образом связан с анализом современных тенденций развития химической науки, тех проблем, которые она должна решать, а так же с проблемой выявления специфики учебно–воспитательного процесса и особенностей интеллектуального развития учащихся на определенном этапе обучения.

В современном мире человек взаимодействует с огромным множеством материалов и веществ природного и антропогенного происхождения. Это взаимодействие отражает сложный комплекс отношений в системах «человек – вещество» и «вещество – материал – практическая деятельность». Результаты деятельности людей во многом определяются такими специфическими компонентами культуры, как нравственность и экологическая грамотность. В формировании этих компонентов культуры важное место должно быть отведено химическим знаниям.

Химия – это не только наука, но и значительная отрасль производства. Химическая технология составляет основу таких «нехимических» производств, как черная и цветная металлургия, пищевая и микробиологическая промышленность, производство лекарственных средств, индустрия строительных материалов и даже атомная энергетика. Это должно найти свое отражение при обучении химии.

Химия изучает ряд специфических закономерностей окружающего мира - связь между структурой и свойствами сложной системы, эволюция вещества. Эти закономерности, составляющие основу химической науки, должны найти отражение в учебном курсе химии.

II. Программа модернизации (реформы) образования в России и ее недостатки

В Советском Союзе существовала отлаженная система химического образования, основанная на линейном подходе, когда изучение химии начиналось в средних классах и заканчивалось в старших. Во всех школах программа изучения химии была рассчитана на четыре года. Существовала согласованная схема обеспечения учебного процесса, в том числе школьная программа и учебники, система подготовки и повышения квалификации учителей, система химических олимпиад всех уровней, комплекты учебных пособий (Библиотека школы, Библиотека учителя и т.д.), общедоступные методические журналы (и т.д.), демонстрационные и лабораторные приборы для школ.

Образование - консервативная и инертная система, поэтому даже после распада СССР химическое образование, понеся тяжелые финансовые потери, продолжало выполнять свои задачи. Однако, несколько лет назад в России началась реформа системы образования, главная цель которой - поддержка вхождения новых поколений в глобализованный мир, в открытое информационное сообщество. Для этого, по мнению авторов реформы, центральное место в содержании образования должны занимать коммуникативность, информатика, иностранные языки, межкультурное обучение. Как видим, для естественных наук места в этой реформе не предусмотрено.

Объявлено, что новая реформа должна обеспечить переход на сопоставимую с мировой систему показателей качества и стандартов образования. Разработан и во многом уже реализуется план конкретных мероприятий, среди которых главные - переход на 12-летнее школьное обучение, введение единого государственного экзамена (ЕГЭ) в форме всеобщего тестирования, разработка новых стандартов обучения на основе концентрической схемы, согласно которой к моменту окончания девятилетки ученики должны иметь целостное представление о предмете.

Эта реформа встретила довольно серьезное сопротивление как в образовательной среде, так и на высоком политическом уровне, поэтому два года назад изменилась риторика: вместо "реформы" стали говорить о "модернизации", но суть осталась прежней.

Как влияет проведение этой реформы на химическое образование в России? На наш взгляд, резко отрицательно. Дело в том, что среди разработчиков Концепции модернизации российского образования не было ни одного представителя естествознания, поэтому интересы последнего в этой концепции совершенно не учтены. ЕГЭ в той форме, в какой его задумали авторы реформы, сломает систему перехода от средней школы к высшей, которую вузы с таким трудом сформировали в первые годы независимости России, и разрушит преемственность российского образования.

Один из аргументов в пользу ЕГЭ состоит в том, что он, по мнению идеологов реформы, обеспечит равный доступ к высшему образованию для различных социальных слоев и территориальных групп населения. Многолетний опыт дистанционного обучения, связанный с проведением Соросовской олимпиады по химии и заочно-очной формой приема на химический факультет МГУ, показывает, что дистанционное тестирование, во-первых, не дает объективной оценки знаний, а, во-вторых, как раз не обеспечивает школьникам равных возможностей. За 5 лет Соросовских олимпиад через факультет прошло больше 100 тыс. письменных работ по химии, и это показало, что общий уровень решений очень сильно зависит от региона; кроме того, чем ниже был образовательный уровень региона, тем больше оттуда присылали идентичных, списанных друг у друга работ.

Единое тестирование не только не обеспечивает равных возможностей, но и, наоборот, ставит в худшие условия сильных школьников, хорошо знающих предмет. Например, в тесте по химии многие вопросы составлены на основе "бумажных" представлений о предмете. Реальная химия отличается от той, которая заложена в тестах. Грамотный юный химик на многие вопросы ответит правильно с точки зрения предмета, но его ответ будет отличаться от авторского и он получит меньше баллов, чем его соперник, не знающий химии, но выучивший правильные ответы. Студенты и сотрудники химический факультет МГУ изучили материалы ЕГЭ и обнаружили большое число некорректных или неоднозначных вопросов, которые нельзя применять для тестирования школьников.

Еще одно существенное возражение против ЕГЭ состоит в том, что само тестирование как форма проверки знаний имеет существенные ограничения. Даже корректно составленный тест не позволяет объективно оценить умение школьника рассуждать и делать выводы. Мы пришли к выводу, что ЕГЭ можно использовать только как одну из форм контроля работы средних школ, но ни в коем случае не как единственный монопольный механизм доступа к высшему образованию.

Другой отрицательный аспект реформы связан с разработкой новых стандартов образования, которые должны приблизить российскую систему образования к европейской. В проекте стандартов, предложенном в 2002 г. Министерством образования, был нарушен один из главных принципов естественнонаучного образования - предметность. Руководители коллектива, который составлял проект, предлагали подумать о том, чтобы отказаться от отдельных школьных курсов химии, физики и биологии и заменить их единым интегрированным курсом "Естествознание". Такое решение, пусть даже принятое на долгосрочную перспективу, просто похоронило бы химическое, физическое и биологическое образование в нашей стране.

Химия - это самостоятельная научная дисциплина, имеющая четкий предмет и систему законов и правил. Интеграция химии с физикой, биологией и математикой не сводит ее к этим наукам. Одни и те же объекты, например атомы или нуклеиновые кислоты, изучаются разными науками по-разному. Поэтому химию нельзя включать в один общий предмет "Естествознание", она должна сохранить свою индивидуальность. В то же время, учебные планы по химии, физике и математике должны быть элементарно согласованы. Например, периодический закон удобно изучать после того, как в физике пройдено строение атома, а водородный показатель - после того, как в математике введено понятие логарифма.

Проблемы и пути развития школьного курса химии

Конспект выступления О.С. Габриэляна

Мы - последние могикане: учителя химии обречены на вымирание. Нам остается только 2 часа в 8-9 классах, в результате учителя химии как класс могут исчезнуть. Либо они уйдут из школы из-за нехватки нагрузки, либо потеряют квалификацию, вынужденные преподавать одновременно историю и географию.

Среднее образование переходит на профильную школу. Это хорошо в плане подготовки к ЕГЭ, сейчас обеспечить подготовку за 2 часа трудно. А если профиль гуманитарный, у учителя химии нет ответственности за подготовку к ЕГЭ. Пришли, показали значение химии и ушли. Плохо, что при этом падает нагрузка. Как бороться с сокращением числа часов и числа учителей?

Первый путь. Методисты и учителя-химики должны отстаивать пусть одночасовой, но курс "Химии", против введения курса «Естествознание». Курс «Естествознание» не готов:

Нет учебников;

Нет методики;

Нет дидактики;

И главное, нет учителей.

Для введения курса «Естествознание» необходима серьезная подготовка. Иначе его будут вести физики, биологи, кто угодно – что для учителя химии дальнейшее сокращение нагрузки. Поэтому надо отстоять хотя бы этот один час для учебного предмета «Химия». Понятно, что этого мало. Откуда взять дополнительные часы?

Второй путь. Элективные курсы. Это могут быть:

Предпрофильные курсы, в 9 классе, короткие (7-12 часов). Имеют важное значение для распределения школьников по профилям, а значит для формирования нагрузки учителя химии в дальнейшем.

Профильные предметы – на них отводится около 20% учебной нагрузки в старшей школе 140-200 часов. В чем их отличие от факультативов? Профильные элективные предметы – обязательный компонент учебного плана, каждый ученик обязан выбрать и изучить 3 элективных предмета. Виды профильных элективных курсов:

Профессиональное образование («Аналитическая химия», «Химическая технология», и т.п.). Такие элективные курсы пойдут в школе, где есть специализированный химический профиль.

Подготовка учащихся к ЕГЭ ("Избранные главы", "Решение задач") такие курсы будут нужны школьникам и не химического профиля, которым тем не менее химия нужна для поступления в вуз (и для успешной учебы в нем) медицинский, сельскохозяйственный и т.п.

Общего развития учащихся ("Пищевые добавки", "Химия и здоровье человека") - курсы полезные и интересные для учащихся любого профиля.

Набрав учеников на элективные курсы учитель химии компенсирует потерю 2-х часов. Какие сложности возникают у учителя на этом пути?

По этим предметам нет учебников, методик. Плохо, когда учителя обязывают разрабатывать элективные курсы. Это не входит в его обязанности и заставлять нельзя, хотя если учитель берется за это – можно только приветствовать.

Сейчас можно найти программы многих элективных курсов, но там только названия тем и список литературы, часто труднодоступной. Возникает сложная проблема подготовки к занятиям. Учителя просят: дайте нам учебник. Желательно иметь две книги:

Книга для учителя – программа, тематическое планирование, методики эксперимента;

Книга для ученика – подборки материалов из различных источников по учебным темам.

Третий путь сохранения полноценного курса химии – пропедевтика химии. Если начать изучение химии на год раньше, это компенсирует потерю часов в старшем звене. Федеральный БУП такой возможности не дает. Но в ряде регионов нашли возможность ввести пропедевтические курсы за счет регионального и школьного компонента.

Учебник «Химия. Вводный курс. 7 класс» в соавторстве с И.Г. Остроумовым и А.К. Ахлебининым писался 12 лет. Сложность в том, что пропедевтика не везде, и надо сохранить равные условия для школьников приходящих в 8-й класс. Основные идеи этого учебника представлены в его четырех главах:

Идея №1. Химия в центре естественных наук. Ничего нового здесь не дается, обобщается и актуализируется химический материал других учебных предметов: природоведение, биология, география, физика…

Также здесь рассматриваются общие вопросы методологии естественных наук: что такое наблюдения, что такое модели…

Идея №2. Западает в основном курсе решение расчетных задач, в основном из-за слабой математической подготовки учащихся. Этим обусловлен раздел «Математика в химии», где актуализируются основные способы – часть от целого и пропорции. Рассматриваются массовая доля элемента в веществе, вещества в растворе, примесей.

Идея №3. Мы не успеваем ставить полноценный химический эксперимент в основной школе: страдают «Химические ручки». Эту проблему призваны помочь решить практические работы пропедевтического курса. «Наблюдения за горящей свечой», «Приготовление растворов», «Выращивание кристаллов», «Очистка поваренной соли», «Изучение коррозии железа».

Идея №4. Заинтересовать, мотивировать, воспитывать. Отсюда раздел «Рассказы по химии»: «Рассказы об ученых», «Рассказы о элементах и веществах» «Рассказы о реакциях»

Но если курс 7 класса становится повсеместным и стабильным, он может решать уже другие задачи. Поэтому сейчас совместно с И.Г. Остроумовым разработан новый учебник 7 класса, который был представлен в газете «Химия» под названием «Старт в химию». Учебное пособие к такому курсу вышло в издательстве «Сиринъ према» под названием «Введение в химию вещества». Оно содержит большое число цветных иллюстраций, посвященных конкретным химическим веществам. В этом учебнике в курс химии 7 класса переносится из основного курса раздел «Химия в статике»:

строение вещества (атомы, молекулы, ионы - без строения атома и химической связи), смеси веществ и их разделение, простые вещества (металлы и неметаллы), сложные вещества (4 класса неорганических веществ, валентность).

Такое перераспределение материала сделает курс 8 класса менее нагруженным.

Итак, основные пути сохранения и развития школьного курса химии в условиях перехода на профильное обучения следующие:

Сохранение индивидуального курса химии в старшем звене средней школы независимо от профиля;

Развитие системы элективных химических курсов, ориентированных на учащихся не только химического, но и любого другого профиля;

Переход к более раннему началу изучения химии в основной школе.

III. Проблемы школьного химического образования

От общих проблем модернизации образования перейдем к проблемам собственно химического образования. Для того, чтобы определить его основные задачи, достаточно ответить на простой вопрос: . Если речь не идет о школьниках, ориентированных на будущую профессиональную работу в области химии, то ответ может быть такой: задача школьного химического образования - дать детям грамотное представление о свойствах веществ и их превращениях в природе. Ребята должны знать, из чего состоят предметы вокруг них, и что с этими предметами может происходить при различных воздействиях: как горят дрова, из чего состоит воздух, почему ржавеет железо, как можно собрать разлившуюся ртуть и т.д.

Химия - наука, в первую очередь, экспериментальная. Современная средняя школа из-за недостатка материальных ресурсов постоянно скатывается в сторону "бумажной химии". Нередки ситуации, когда хороший ученик умеет расставлять коэффициенты в сложном уравнении, но не имеет представления о том, как выглядят участники реакции, и даже не знает, твердые они или жидкие. Для того, чтобы исправить эту ситуацию, необходимо увеличить число лабораторных занятий и резко улучшить оснащение учебных химических лабораторий (кабинетов). Каждая школа должна быть оснащена кабинетом химии с минимально необходимым набором оборудования и реактивов. Для этого можно воспользоваться услугами отечественной промышленности, которая разрабатывает специальные программы для оснащения школьных лабораторий. На сегодняшний день ситуация такова, что в России многие из школ вообще не имеют школьных кабинетов химии.

Другая проблема связана с логической структурой и теоретическим содержанием школьного химического образования. Теоретические модели, структуры и терминология современной химии стремительно развиваются и усложняются. Современная химия, конечно же, должна находить отражение и на школьном уровне. Теоретическую химию уже нельзя излагать на уровне середины прошлого века. В принципе, школьникам можно наглядно объяснить любые химические понятия, например такие как двойственная природа электрона, элементарная стадия реакции или водородный показатель. Эти объяснения, однако, должны быть и научно обоснованными, чтобы у школьников не сложилось представление о том, что атом - это набор стрелок, химическая связь - это "палка", соединяющая атомы, а электрон - вращающийся волчок. В последние годы научный уровень школьных программ и учебников несколько вырос, однако ясного и четкого изложения теоретической химии никому еще добиться не удалось.

Важная задача профильного химического образования - подготовка учеников к высшей школе. Успешному переходу от средней школы к высшей должна способствовать грамотная программа для поступающих в вузы. Существующая программа, предложенная Министерством образования и обязательная для всех вузов включая университеты, имеет существенные содержательные недостатки. В ней отсутствует целый ряд важных разделов и понятий, таких как агрегатное состояние вещества, кислотно-основные реакции в растворах, гидролиз. Для того, чтобы исправить ситуацию, необходимо создать новую программу, которая объединяла бы в себе научно-методические идеи, уже апробированные в программах для поступающих в Российские университеты, химико-технологические и медицинские вузы.

Подводя итог, можно сформулировать основные направления позитивной деятельности, направленной на сохранение традиций и развитие химического образования в России:


  • создание новой школьной программы по химии;

  • создание нового комплекта учебников по этой программе;

  • развитие экспериментальной базы школьного химического образования на базе отечественной промышленности;

  • создание единой базовой программы по химии для поступающих в вузы
Однако, существует еще одна глобальная проблема, которая охватывает все вышеперечисленные направления: это - проблема государственного стандарта общего образования.

III. Новый государственный стандарт школьного химического образования

Проблема стандарта возникла в начале 90-х годов прошлого века, когда при активном участии тогдашнего министра образования Э.Днепрова школьное образование взяло курс на вариативность. За короткий срок в стране были написаны многочисленные авторские программы, учебники, пособия по химии, при этом качество многих из них было более чем сомнительным. Каждый учитель получил право сам выбирать, чему и как учить. В результате достаточно быстро выяснилось, что содержание образования перегружено второстепенной информацией, не имеющей значения ни для дальнейшего развития учеников, ни для окружающей жизни. Актуальным стал вопрос о стандартизации содержания школьного образования.

В июне 2002 г. законопроект "О государственном стандарте общего образования" был принят Государственной Думой РФ в первом чтении. В соответствии с ним, утверждению стандарта должно предшествовать общественное обсуждение проекта. Для разработки стандартов Министерство образования РФ совместно с Академией образования создали временный научный коллектив под руководством академиков РАО Э.Днепрова и В.Шадрикова, который уже через несколько месяцев опубликовал свой проект. Общественное обсуждение, которое состоялось во многих школах, вузах, Российской Академии Наук, показало несостоятельность этого проекта. Так, президиум РАН в своем постановлении отметил, что "проект... государственного стандарта общего образования, подготовленный Минобразованием России, неудовлетворителен. Его принятие приведет к катастрофическому снижению уровня школьного образования в нашей стране с последующим неизбежным падением ее оборонного и экономического потенциала". После этого были созданы новые рабочие группы по доработке стандартов.

В рамках принятой в России концентрической схемы разработано три стандарта по химии: (1) основное общее образование (8-9 классы), (2) базовое среднее (10-11 классы) и (3) профильное среднее образование (10-11 классы).

Принимаясь за разработку стандарта химического образования, авторы исходили из тенденций развития современной химии и учитывали ее роль в естествознании и в обществе. Современная химия это фундаментальная система знаний об окружающем мире, основанная на богатом экспериментальном материале и надежных теоретических положениях. Научное содержание стандарта базируется на двух основных понятиях: и.

Главное понятие химии. Вещества окружают нас везде: в воздухе, пище, почве, бытовой технике, растениях и, наконец, в нас самих. Часть из этих веществ нам дана природой в готовом виде (кислород, вода, белки, углеводы, нефть, золото), другую часть человек получил путем небольшой модификации природных соединений (асфальт или искусственные волокна), но самое большое число веществ, которые раньше в природе не существовали, человек синтезировал самостоятельно. Это - современные материалы, лекарства, катализаторы. На сегодняшний день известно около 20 млн. органических и около полумиллиона неорганических веществ, и каждое из них обладает внутренней структурой. Органический и неорганический синтез достиг такой высокой степени развития, что позволяет синтезировать соединения с любой заранее заданной структурой. В связи с этим, на первый план в современной химии выходит прикладной аспект, в котором упор делается на связи структуры вещества с его свойствами, а основная задача состоит в поиске и синтезе полезных веществ и материалов, обладающих заданными свойствами.

Самое важное в окружающем мире состоит в том, что он постоянно изменяется. Второе главное понятие химии - это. Каждое мгновение в мире происходит неисчислимое множество реакций, в результате которых одни вещества превращаются в другие. Некоторые реакции мы можем наблюдать непосредственно, например ржавление железных предметов, свертывание крови, сгорание автомобильного топлива. В то же время, подавляющее большинство реакций остаются невидимыми, но именно они определяют свойства окружающего нас мира. Для того, чтобы научиться этим миром управлять, человек должен глубоко понять природу реакций и те законы, которым они подчиняются. Задача современной химии состоит в изучении функций веществ в сложных химических и биологических системах, анализе связи структуры вещества с его функциями и синтезе веществ с заданными функциями.

Исходя из того, что стандарт должен служить инструментом развития образования, было предложено разгрузить содержание основного общего образования и оставить в нем только те элементы содержания, образовательная ценность которых подтверждена отечественной и мировой практикой преподавания химии в школе. Минимальная по объему, но функционально полная система знаний, представленная в стандарте основного общего образования, структурирована по шести содержательным блокам:


  • Методы познания веществ и химических явлений

  • Вещество

  • Химическая реакция

  • Элементарные основы неорганической химии

  • Первоначальные представления об органических веществах

  • Химия и жизнь
Стандарт базового среднего образования разбит на пять содержательных блоков:

  • Методы познания химии

  • Теоретические основы химии

  • Неорганическая химия

  • Органическая химия

  • Химия и жизнь
Последние блоки в каждом стандарте были введены для усиления практической жизненной направленности обучения. С этой же целью в разделах "Требования к уровню подготовки выпускников" перечислены ситуации повседневной жизни и практической деятельности, в которых необходимо использовать знания и умения, приобретенные на уроках химии.

Преемственность между общим и средним образованием обеспечивается тем, что основу обоих стандартов составляют Периодический закон Д.И.Менделеева, теория строения атомов и молекул, теория электролитической диссоциации и структурная теория органических соединений.

Два уровня образовательного стандарта среднего (полного) образования - базовый и профильный - существенно различаются по своим целям и содержанию. Стандарт базового среднего уровня призван прежде всего обеспечить выпускнику средней школы возможность ориентироваться в общественных и личных проблемах, связанных с химией. В стандарте профильного уровня система знаний значительно расширена, в первую очередь за счет представлений о строении атомов и молекул, а также закономерностях протекания химических реакций, рассматриваемых с точки зрения теорий химической кинетики и химической термодинамики. Тем самым обеспечивается подготовка выпускников средней школы к продолжению химического образования в высшей школе.

В настоящее время все три стандарта по химии проходят общественное обсуждение и готовятся к законодательному утверждению .

IV. Новая школьная программа и
новые учебники по химии

Новый, научно обоснованный стандарт химического образования подготовил благоприятную почву для разработки новой школьной программы и создания комплекта школьных учебников на ее основе.

Программа курса химии основной общеобразовательной школы рассчитана на учащихся 8 - 9 классов. От типовых программ, действующих в настоящее время в средних школах России, ее отличают более выверенные междисциплинарные связи и точный отбор материала, необходимого для создания целостного естественнонаучного восприятия мира, комфортного и безопасного взаимодействия с окружающей средой в условиях производства и в быту. Программа построена таким образом, что в ней главное внимание уделяется тем разделам химии, терминам и понятиям, которые так или иначе связаны с повседневной жизнью, а не являются узко ограниченного круга лиц, чья деятельность связана с химической наукой.

Задача первого года обучения химии (8 класс) состоит в формировании у учащихся элементарных химических навыков, и химического мышления, в первую очередь на объектах, знакомых им из повседневной жизни (кислород, воздух, вода). В 8 классе мы сознательно избегаем сложного для восприятия учащихся понятия, практически не используем расчетные задачи. Основная идея этой части курса - привить учащимся навыки описания свойств различных веществ, сгруппированных по классам, а также показать связь между их строением и свойствами. На втором году обучения (9 класс) школьники знакомятся с основными теориями неорганической химии - теорией электролитической диссоциации и теорией окислительно-восстановительных процессов. На основе этих теорий рассматриваются свойства неорганических веществ. В специальном разделе кратко рассматриваются элементы органической химии и биохимии.

В целях развития химического взгляда на мир в курсе проводятся широкие корреляции между полученными учащимися в классе элементарными химическими знаниями и свойствами тех объектов, которые известны школьникам в повседневной жизни, но до этого воспринимались ими лишь на бытовом уровне. На основе химических представлений учащимся предлагается взглянуть на драгоценные и отделочные камни, стекло, фаянс, фарфор, краски, продукты питания, современные материалы. В программе расширен круг объектов, которые описываются и обсуждаются лишь на качественном уровне, не прибегая к громоздким химическим уравнениям и сложным формулам. Мы обращали большое внимание на стиль изложения, который позволяет вводить и обсуждать химические понятия и термины в живой и наглядной форме. В этой связи постоянно подчеркиваются междисциплинарные связи химии с другими науками, не только естественными, но и гуманитарными.

Новая программа реализована в комплекте школьных учебников для 8-9 классов, которые сданы в печать. При создании учебников мы учитывали изменение социальной роли химии и общественного интереса к ней, которое вызвано двумя основными взаимосвязанными факторами. Первое - это, т.е. отрицательное отношение общества к химии и ее проявлениям. В этой связи важно на всех уровнях объяснять, что плохое - не в химии, а в людях, которые не понимают законов природы или имеют нравственные проблемы. Химия - очень мощный инструмент, в законах которой нет понятий добра и зла. Пользуясь одними и теми же законами, можно придумать новую технологию синтеза наркотиков или ядов, а можно - новое лекарство или новый строительный материал. Другой социальный фактор - это прогрессирующая химическая безграмотность общества на всех его уровнях - от политиков и журналистов до домохозяек. Большинство людей совершенно не представляет, из чего состоит окружающий мир, не знает элементарных свойств даже простейших веществ и не может отличить азот от аммиака, а этиловый спирт от метилового. Именно в этой области грамотный учебник по химии, написанный простым и понятным языком, может сыграть большую просветительскую роль.

При создании учебников мы исходили из следующих постулатов.

Основные задачи школьного курса химии:


  1. Формирование научной картины окружающего мира и развитие естественнонаучного мировоззрения. Представление химии как центральной науки, направленной на решение насущных проблем человечества.

  2. Развитие химического мышления, умения анализировать явления окружающего мира в химических терминах, развитие способности говорить и думать на химическом языке.

  3. Популяризация химического знания и внедрение представлений о роли химии в повседневной жизни и ее прикладном значении в жизни общества. Развитие экологического мышления и знакомство с современными химическими технологиями.

  4. Формирование практических навыков безопасного обращения с веществами в повседневной жизни.

  5. Пробуждение живого интереса у школьников к изучению химии как в рамках школьной программы, так и дополнительно.
Основные идеи школьного курса химии

  1. Химия - центральная наука о природе, тесно взаимодействующая с другими естественными науками. Основное значение для жизни общества имеют прикладные возможности химии.

  2. Окружающий мир состоит из веществ, которые характеризуются определенной структурой и способны к взаимным превращениям. Существует связь между структурой и свойствами веществ. Задача химии состоит в создании веществ с полезными свойствами.

  3. Окружающий мир постоянно изменяется. Его свойства определяются химическими реакциями, которые в нем протекают. Для того, чтобы управлять этими реакциями, необходимо глубоко понимать законы химии.

  4. Химия - мощный инструмент для преобразования природы и общества. Безопасное применение химии возможно только в высокоразвитом обществе с устойчивыми нравственными категориями.
Методические принципы и стиль учебников

  1. Последовательность изложения материала ориентирована на изучение химических свойств окружающего мира с постепенным и деликатным знакомством с теоретическими основами современной химии. Описательные разделы чередуются с теоретическими. Материал равномерно распределен по всему периоду обучения.

  2. Постоянная демонстрация связи химии с жизнью, частое напоминание о прикладном значении химии, научно-популярный анализ веществ и материалов, с которыми учащиеся сталкиваются в повседневной жизни.

  3. Высокий научный уровень и строгость изложения. Химические свойства веществ и химические реакции описываются так, как они идут на самом деле. Химия в учебниках - реальная, а не.

  4. Дружелюбный, легкий и беспристрастный стиль изложения. Простой, доступный и грамотный русский язык. Использование - коротких, занимательных рассказов, связывающих химические знания с повседневной жизнью - для облегчения восприятия. Широкое использование иллюстраций, которые составляют около 15% объема учебников.

  5. Широкое использование простых и наглядных демонстрационных опытов, лабораторных и практических работ для изучения экспериментальных аспектов химии и развития практических навыков учащихся.
В дополнение к учебникам планируется издание методических указаний для учителей, книг для чтения для учащихся, задачника по химии и компьютерной поддержки в виде компакт-дисков, содержащих электронный вариант учебника, справочные материалы, демонстрационные опыты, иллюстрации, анимационные модели, программы для решения расчетных задач.

Мы надеемся, что эти учебники позволят многим школьникам по-новому взглянуть на наш предмет и покажут им, что химия - не только полезная, но и очень увлекательная наука.

V. Современная система химических олимпиад

В развитии интереса школьников к химии кроме учебников большую роль играют химические олимпиады. Система химических олимпиад - одна из немногих образовательных структур, которые выдержали распад страны. С самого первого года существования независимой России стала проводиться Всероссийская олимпиада по химии. В настоящее время эта олимпиада проходит в пять этапов: школьный, районный, областной, федеральный окружной и финальный. Победители финального этапа представляют Россию на Международной химической олимпиаде. Самыми важными с точки зрения образования являются наиболее массовые этапы - школьный и районный, за который отвечают школьные учителя и методические объединения городов и районов России. За всю олимпиаду в целом отвечает Министерство образования.

Интересно, что бывшая Всесоюзная олимпиада по химии тоже сохранилась, но в новом качестве. Ежегодно химический факультет МГУ организует международную Менделеевскую олимпиаду, в которой участвуют победители и призеры химических олимпиад стран СНГ и Балтии.

Менделеевская олимпиада позволяет талантливым детям из бывших республик Советского Союза поступить в Московский университет и другие престижные вузы без экзаменов. Кроме того, эта олимпиада является мощным инструментом создания единого образовательного химического пространства в странах-участницах. Одаренные школьники получают новые возможности общения со своими сверстниками и будущими коллегами по профессии из других стран. Жюри и оргкомитет Менделеевской олимпиады в разные годы возглавляли известные ученые: академики Ю.А.Золотов, А.Л.Бучаченко, П.Д.Саркисов. В настоящее время олимпиадой руководит академик В.В.Лунин.

Подводя итоги, можно сказать, что несмотря на сложные внешние и внутренние обстоятельства, химическое образование в России находится на достаточно высоком уровне и имеет хорошие перспективы. Главное, что нас в этом убеждает, - это неиссякаемый поток юных талантов, увлеченных нашей любимой наукой и стремящихся получить хорошее образование и принести пользу себе и своей стране.

Литература:


  1. О.С. Габриэлян « Проблемы и пути развития школьного курса химии» Конспект выступления на семинаре "Содержание и методика преподавания химии...", АПКиППРО.
  1. В.В.ЕРЕМИН , доцент химического факультета МГУ,
    Н.Е.КУЗЬМЕНКО, профессор химического факультета МГУ
    (Москва) «Современное химическое образование в России:
    стандарты, учебники, олимпиады, экзамены». Выступление на втором
    Московском педагогическом марафоне
    учебных предметов, 9 апреля 2003 г.