Основания льюиса. Электронная теория кислот и оснований Льюиса

Теории кислот и оснований

Теории кислот и оснований - совокупность фундаментальных физико-химических представлений, описывающих природу и свойства кислот и оснований . Все они вводят определения кислот и оснований -- двух классов веществ, реагирующих между собой. Задача теории -- предсказание продуктов реакции между кислотой и основанием и возможности её протекания, для чего используются количественные характеристики силы кислоты и основания. Различия между теориями лежат в определениями кислот и оснований, характеристики их силы и, как следствие -- в правилах предсказания продуктов реакции между ними. Все они имеют свою область применимости, каковые области частично пересекаются.

Кислотно-основные взаимодействия чрезвычайно распространенены в природе и находят широкое применение в научной и производственной практике. Теоретические представления о кислотах и основаниях имеют важное значение в формировании всех концептуальных систем химии и оказывают разностороннее влияние на развитие многих теоретических концепций во всех основных химических дисциплинах.

На основе современной теории кислот и оснований разработаны такие разделы химических наук, как химия водных и неводных растворов электролитов, рН-метрия в неводных средах, гомо- и гетерогенный кислотно-основный катализ , теория функций кислотности и многие другие.

Эволюция представлений о кислотно-основных взаимодействиях

Научные представления о природе кислот и оснований начали формироваться в конце XVIII в. В работах А. Лавуазье кислотные свойства связывались с наличием в составе вещества атомов кислорода . Известные тогда минеральные и органические кислоты, действительно, содержали кислород. Эта гипотеза быстро показала свою несостоятельность, когда благодаря работам Г. Дэви и Ж. Гей-Люссака стал известен целый ряд кислот, не содержащих кислорода (например, галогеноводороды , синильные кислоты), в то время, как многие кислородсодержащие соединения не проявляют кислотных свойств.

С начала XIX века кислотами стали считать вещества, способные к взаимодействию с металлам с выделением водорода (Ю. Либих , 1839). Примерно в это же время Й. Берцелиус выдвинул идею, объясняющую кислотно-основные свойства веществ их электрической «дуалистической» природой. Так, к кислотам он относил электроотрицательные оксиды неметаллов и некоторых металлов (например, хрома , марганца и др.), а электроположительные оксиды металлов считал основаниями. Таким образом, кислотность или основность Берцелиусом рассматривается как функциональное, а не абсолютное свойство соединения. Берцелиус впервые сделал попытку количественной оценки и предсказания силы кислот и оснований .

C появлением теории электролитической диссоциации С. Аррениуса (1887) возникла возможность описания кислотно-основных свойств исходя из продуктов ионизации электролита . Благодаря работам В. Оствальда теория получила развитие для слабых электролитов.

В начале XX в. американские химики Г. Кэди, Э. Франклин и Ч. Краус создали теорию сольвосистем, распространившую положения теории Аррениуса-Освальда на все растворители, способные к самодиссоциации .

В основу современных теорий кислот и оснований положены представления Й. Брёнстеда и Г. Льюиса . Имеются вполне успешные попытки создать обобщенные теории (М. Усанович , 1939), но они не находят широкого применения .

Водородная теория Либиха

Определения. Кислота -- вещество, способное реагировать с металлом с выделением водорода. Понятие "основание" в этой теории отсутствует.
Продукты реакции. При реакции кислоты с металлом образуется соль и водород.
Примеры. Кислота -- HCl.
Реакция 2HCl + Zn = ZnCl 2 + H 2
Критерии протекания реакции. С сильными кислотами реагируют металлы, стоящие в ряду активностей левее водорода. Чем слабее кислота, тем более активный металл нужен для реакции между ними. Количественные характеристики. Поскольку теория используется редко, количественные характеристики силы кислоты (а значит, и предсказания направления реакции) в рамках данной теории не разработаны.
Область применимости. Предсказание взаимодействия водородсодержащих веществ с металлами в любых растворителях.
Специфические черты. В соответствии с этой теорией этиловый спирт и аммиак являются слабыми кислотами, так как способны реагировать со щелочными металлами:

2C 2 H 5 OH + 2Na = 2C 2 H 5 ONa + H 2
2NH 3 + 2Na = 2NaNH 2 + H 2

Теория электролитической диссоциации Аррениуса-Оствальда

Основная статья: Теория электролитической диссоциации

Для кислоты HA K = ·/
Для основания MOH K = ·/

Чтобы прошла реакция между кислотой и основанием, произведение их констант диссоциации должно быть больше, чем 10 -14 (ионное произведение воды).
Область применимости. Она вполне удовлетворительно описывает реакции достаточно сильных кислот и оснований друг с другом и свойства их водных растворов. На основе представлений о степени и константе диссоциации было закреплено деление электролитов на сильные и слабые, введено понятие водородного показателя , распространение которого на щелочные среды требует, однако, дополнительных допущений (введения ионного произведения воды).
Теорию можно применять для описания гидролиза солей и реакции кислот и оснований с солями, однако при этом требуется весьма громоздкий аппарат - протонная теория (см. ниже) гораздо удобнее.
Применимость теории Аррениуса-Оствальда ограничивается водными растворами. кроме того, она не позволяет объяснить наличие основных свойств аммиака , фосфина и других соединений, не содержащих гидроксогрупп .

Протонная теория Брёнстеда-Лаури

Основная статья: Протолитическая теория кислот и оснований

Сравнение моделей
кислотно-основного взаимодействия
по Льюису и Брёнстеду

Протолитическая (протонная) теория кислот и оснований была предложена в 1923 году независимо друг от друга датским учёным Й. Брёнстедом и английским учёным Т. Лаури. В ней понятие о кислотах и основаниях было объединено в единое целое, проявляющееся в кислотно-основном взаимодействии: А В + Н + (А - кислота, В - основание). Согласно этой теории кислотами являются молекулы или ионы, способные быть в данной реакции донорами протонов , а основаниями являются молекулы или ионы, присоединяющие протоны (акцепторы). Кислоты и основания получили общее название протолитов.

Сущностью кислотно-основного взаимодействия является передача протона от кислоты к основанию. При этом кислота, передав протон основанию, сама становится основанием, так как может снова присоединять протон, а основание, образуя протонированную частицу, становится кислотой. Таким образом, в любом кислотно-основном взаимодействии участвуют две пары кислот и оснований, названные Бренстедом сопряженными : А1 + В2 А2 + В1.

Одно и то же вещество в зависимости от условий взаимодействия может быть как кислотой, так и основанием (амфотерность). Например, вода при взаимодействии с сильными кислотами является основанием: H 2 O + H + H 3 О + , а реагируя с аммиаком, становится кислотой: NH 3 + H 2 O NH 4 + + OH − .

Теория сольвосистем

Основная статья: Теория сольвосистем

Теория сольвосистем -- расширение теории Аррениуса-Оствальда на другие ионные (в частности, протонные растворители). Предложена американскими химиками Г. Кэди, Э. Франклин и Ч. Краусом
Определения. Ионный растворитель - растворитель, самодиссоциирующий на катион и анион. Катион при этом называется ионом лиония, а анион -- ионом лиата. Протонный растворитель - растворитель, способный к автопротолизу , то есть передаче иона H + от одной молекулы к другой:

2HL ↔ H 2 L + + L -

Это растворители, содержащие достаточно полярную связь с участием водорода и неподеленную электронную пару на каком-либо другом неметалле (чаще всего, азоте, кислороде или фторе).
Примечание: в данном определении "зашита" протонная теория, ибо автопротолиз есть кислотно-основная реакция по Брестеду-Лоури. В нём также "зашита" теория Льюиса, поскольку именно она объясняет причины образования ионов лиония.
Ион H 2 L + при этом называется ионом лиония, а L - - ионом лиата.
Кислоты - это вещества, образующие в данном растворителе ион лиония.
Основания - вещества, образующие в данном растворителе ион лиата.
Соли -- вещества, диссоциирующие в данном растворителе с образованием катиона и аниона, не являющихся лионием и лиатом.
Продукты реакции. В реакции кислоты с основанием (реакция нейтрализации образуется соль и растворитель.
Примеры.

Количественные характеристики и критерии протекания реакции Силы кислот и оснований характеризуются их константой диссоциации.
Константы диссоциации зависят от растворителя. Протонные растворители с высоким константами автодиссоциации ("кислотные растворители", например HF) дифференцируют кислоты (в них кислоты становятся слабыми и различающимися по силе) но нивелируют основания (все основания становятся сильными, правращаясь в ион лиата). Протонные растворители с низкими константами автодиссоциации ("основные растворители, например NH 3) дифференцируют основания, но нивелируют кислоты (которые становятся сильными, превращаясь в лионий).
Реакция идёт от сильных кислот к слабым.
Область применимости. Позволяет предсказывать кислотно-основные реакции в любых растворителях. Управление кислотно-основными процессами при помощи растворителя. Расширяет на неводные растворы понятие водородного показателя (pH) как концентрацию ионов лиония. Описывает основные свойства веществ, не содержащих групп ОН.
Однако для многих задач теория слишком громоздкая.
Специфические черты Некоторые кислотно-основные реакции в этой теории могут встать "с ног на голову", например

KOH (кислота) + HCl (основание) = KCl (растворитель) + H 2 O (соль)

Электронная теория Льюиса

Основная статья: Теория Льюиса

В теории Льюиса (1923 г.) на основе электронных представлений было ещё более расширено понятие кислоты и основания. Кислота Льюиса - молекула или ион, имеющие вакантные электронные орбитали, вследствие чего они способны принимать электронные пары. Это, например, ионы водорода – протоны , ионы металлов (Ag + , Fe 3+), оксиды некоторых неметаллов (например, SO 3 , SiO 2), ряд солей (AlCl 3), а также такие вещества как BF 3 , Al 2 O 3 . Кислоты Льюиса, не содержащие ионов водорода, называются апротонными . Протонные кислоты рассматриваются как частный случай класса кислот. Основание Льюиса - это молекула или ион, способные быть донором электронных пар: все анионы, аммиак и амины , вода , спирты , галогены . Примеры химических реакций между кислотами и основаниями Льюиса:

  • AlCl 3 + Cl − → AlCl 4 −
  • BF 3 + F − → BF 4 −
  • PCl 5 + Cl − → PCl 6 − .

Общая теория Усановича

Наиболее общая теория кислот и оснований была сформулирована М. Усановичем в 1939 году. В основе теории лежит представление о том, что всякое кислотно-основное взаимодействие - это реакция солеобразования. Согласно этой теории «кислота - это частица, которая может отщеплять катионы, включая протон, или присоединять анионы, включая электрон. Основание - частица, которая может присоединять протон и другие катионы или отдавать электрон и другие анионы » (формулировка 1964 г.). В отличие от Льюиса Усанович в основе понятий «кислота» и «основание» использует знак заряда частицы, а не строение электронной оболочки.

Теория Усановича фактически отменяет один из основополагающих принципов классической химии - представления о классах кислот и оснований: «кислоты и основания - это не классы со­единений; кислотность и основность - это функции вещества. Будет ли веще­ство кислотой или основанием, зави­сит от партнера » .

К недостаткам теории Усановича относят её слишком общий характер и недостаточно чёткую определённость формулировки понятий «кислота» и «основание». К недостаткам относят также то обстоятельство, что она не описывает неионогенные кислотно-основные превращения. Наконец, она не позволяет делать количественные предсказания

Кислотность и основность - важнейшие понятия, определяющие многие фундаментальные физико-химические свойства и биологическую активность органических соединений. В органической химии существует несколько кон­цепций кислот и оснований. Общепринятой является протолитическая теория Брёнстеда-Лоури (1923). Почти одновременно Г. Льюис предложил более общую концепцию кислот и оснований, на основе которой в дальнейшем Р. Пирсон (1963) разработал принцип жестких и мягких кислот и оснований.

Кислотность и основность по Брёнстеду-Лоури. В соответствии с теорией Брёнстеда-Лоури кислотность и основность со­единений связывают с переносом протона Н + .

Кислоты - вещества, способные отдавать протон (доноры прогона); осно­вания - вещества, способные принимать протон (акцепторы протона). Кислота и основание образуют сопряженную кислотно-основную пару. Кислотные свойства проявляются в присутствии основания, основные - в при­сутствии кислоты.

В общем виде кислотно-основное взаимодействие описывается уравнением

В принципе большинство органических соединений можно рассматривать как потенциальные кислоты, поскольку в них содержатся атомы водорода, связанные с разными элементами (О, S, N, С). Элемент и связанный с ним атом водорода называют кислотным центром . Органические кислоты соответ­ственно классифицируют по кислотному центру как ОН-, SH-, NH- и СН-кислоты. Кислотами могут быть не только нейтральные моле­кулы, но и положительно заряженные ионы, а также диполярные ионы. Органические основания для образования ковалентной связи с протоном кислоты должны либо иметь неподеленную пару электронов у гетероатома (нейтральные молекулы), либо быть анионами. В целом основания, имеющие в молекулах гетероатом, называются n-основаниями . Существует еще одна группа оснований - π-основания , в которых цент­ром основности являются электроны локализованной π-связи или π-электронного облака сопряженной системы. π-Основания образуют с протоном не ковалентные связи, а короткоживущие π-комплексы.



Кислотность и основность веществ по Брёнстеду-Лоури характеризуется количественно. Применяя закон действующих масс, можно выразить кислот­ные свойства кислоты А-Н через константу равновесия K p , представленной выше реакции обратимого кислотно-основного взаимодействия:

Очевидно, что константа равновесия реакции ионизации кислоты имеет постоянное значение только для данной системы и по отношению к каждому основанию существует своя шкала констант кислотности. Наиболее важным случаем является ионизация кислот в водном растворе (вода играет роль осно­вания):

Поскольку вода присутствует в большом избытке, то ее концентрация ос­тается практически постоянной, равной 55,5 моль/л. Это значение включают в константу равновесия и получают характеристику, называемую константой кислотности К а :

Чем больше К а , тем сильнее кислота . Однако даже такая сравнительно сильная по меркам органических соединений кислота, как уксусная, имеет К а = 1,75 10 -5 . Для большинства органических соединений К а имеют еще меньшие значения. Поэтому для оценки силы органических кислот значительно удобнее пользоваться значениями р К а представляющими собой отрицательный логарифм констант кислотности: рК а = -lg К а. При этом чем меньше рК а , тем сильнее кислота . Кислоты, у которых рК а > 7, не изменяют цвет нейтральной индикаторной бумаги; кислоты с рК а >10 не имеют кислого вкуса.

Основность соединений в водном растворе можно охарактеризовать вели­чиной рК b , которая связана с рК а через ионное про­изведение воды: рК b = 14 - рК а. Однако в настоящее время для характеристики основности чаще используют величину рК а сопря­женной основанию В кислоты ВН + , обозначаемую как рK BH + . Такой подход по­зволяет применять одну и ту же шкалу для характеристики ионизации как кислот, так и оснований. В этом случае чем больше pK BH + , тем сильнее основание .

Слабые кислоты и основания в биологических системах. Большинство биологически активных органических соединений, в част­ности лекарственных веществ, являются слабыми кислотами или основания­ми. Степень ионизации таких соединений в той или иной среде имеет важное значение для проявления биологического действия. Известно много лекарст­венных веществ, терапевтическая активность которых определяется долей присутствующих неионизированных молекул, хотя существуют и другие при­меры, когда, наоборот, ионизированная часть вещества обусловливает биологи­ческий эффект за счет взаимодействия с катионными или анионными центра­ми рецепторов. Различия в степени ионизации обеспечивают избирательность действия, и это связано с такими факторами, как, например, проникновение через мембраны в плазму крови или клетку, адсорбцией на поверхностях фер­ментов, возможной ионизацией центров рецептора в зависимости от pH и т. д.

Степень ионизации органических кислот и оснований в растворе опреде­ляется значениями двух параметров: pH раствора и рК а кислоты (или рК BH + ос­нования). Если значения рК а (или pK BH +) вещества и pH раствора известны, то степень ионизации может быть рассчитана следующим образом:

Степень ионизации имеет важное значение для процессов проникновения веществ через различные мембраны в организме, например при всасывании (абсорбции) лекарств из желудочно-кишечного тракта. Мембраны эпителия пищеварительного тракта можно рассматривать как липидный бислой, в кото­рый встроены белковые молекулы. Гидрофобные участки мембранных белков погружены во внутреннюю полость мембраны, а ионизированные участки об­ращены к водной фазе внутри и снаружи. Согласно классической теории, мембраны подобного типа препятствуют прохождению ионов, так как, во-первых, ионы вследствие гидратации имеют относительно большой размер и, во-вторых, если заряд иона и заряд белковой поверхности, к которой он приближается, аналогичны по знаку, то происходит отталкивание, а если про­тивоположны, то происходит адсорбция иона на поверхности мембраны. Че­рез природные мембраны проникают только те ионы, для которых существуют специфические транспортные системы или переносчики. Нейтральные липи­дорастворимые молекулы проникают через мембраны и тем быстрее, чем вы­ше их липофильные свойства. Таким образом в желудочно-кишечном тракте происходит всасывание неионизированных молекул лекарственных веществ.

Препараты кислотной природы будут лучше всасываться из желудка (pH 1-3), а всасывание лекарств-оснований будет происходить только после того, когда они пройдут из желудка в кишечник (содержимое тонкого кишеч­ника имеет pH 7-8). В течение одного часа из желудка крыс всасывается почти 60% ацетилсалициловой кислоты и только 6% анили­на от введенной дозы. В кишечнике крыс всасывается уже 56% от введенной дозы анилина. Примечательно, что такое слабое основание, как кофеин (рK В H + 0,8), всасывается за то же время в гораздо большей степени (36%), так как даже в сильнокислой среде желудка кофеин в значительной степени нахо­дится в неионизированном состоянии.

Эффективность действия лекарственных веществ обусловливается спо­собностью их проникновения к рецептору. Дли веществ, способных к иониза­ции, биологическая активность может определяться долей неионизированных молекул или, наоборот, ионизированной частью вещества. Имеются много­численные примеры и того, и другого вариантов. Так, и фенол и уксусная кис­лота прекращают рост различных плесневых грибов; их биологическое дейст­вие обусловлено неионтированными молекулами, и поэтому наибольшая эф­фективность уксусной кислоты проявляется при pH ниже 4, а для фенола при любых значениях pH ниже 9, так как в этих диапазонах значений pH и фенол и уксусная кислота находятся в неионизированном состоянии. Также только неионизированный теофиллин, в отличие от своего аниона, стимулирует де­ятельность сердца черепахи. На примере ряда сульфаниламидных препаратов, наоборот, установлено, что их антибактериальная активность обусловлена анионами. Оптимальное для проявления активности значение рК а сульфанил­амидов находится в интервале 6-8. Через мембрану в клетку проникают неионизированные молекулы, но при физиологических значениях pH вновь об­разуются ионы, пока по обе стороны мембраны не установится равная степень ионизации:

Антибактериальная активность сульфаниламидов пропорциональна степе­ни ионизации, но зависит также и от липофильности молекул.

И еще один пример, когда биологическая активность обусловлена иони­зированной формой вещества: антибактериальное (бактериостатическое) дей­ствие аминоакридинов проявляется только в катионной форме этих соединений и возрастает при повышении степени их катионной ионизации. Изменение степени ионизации в зависимости от pH среды широко ис­пользуют для выделения лекарственных веществ из биологических жидкостей (кровь, моча) с целью их последующего анализа, например, при проведении фармакокинетических исследований.

Кислоты и основания Льюиса . Согласно теории Льюиса, кислотно-основные свойства соединений опре­деляются их способностью принимать или отдавать пару электронов с образо­ванием новой связи. Кислоты Льюиса - акцепторы пары электронов. Основания Льюиса до­норы пары электронов.

Основания Брёнстеда и основания Льюиса являются донорами пары электронов - либо неподеленной, либо находящейся на р-орбитали, т. е. по­нятия тождественны в той и другой теории. Кислотность по Льюису имеет но­вый и более широкий смысл. Кислотой считается любая частица с вакантной орбиталью, которая способна дополнить свою электронную оболочку парой электронов. По Брёнстеду кислота - это донор протона, а по Льюису - сам протон Н + является кислотой, так как имеет вакантную орбиталь.

Кислотами Льюиса являются галогениды элементов второй и третьей групп периодиче­ской системы (BF 3 , А1С1 3 , FeCl 3 , FeBr 3 , ZnCl 2 и др.). К кислотам Льюиса также относятся галогениды других элементов, имеющих вакантные орбитали - SnX 4 , SbX 5 , AsX 5 и даже оксид серы (VI) SО 3 . Галогениды бора, алюминия име­ют по шесть электронов на внешней оболочке и способны принимать пару электронов с образованием ковалентной связи. Тетрахлорид олова, например, имеет 8 электронов на внешней оболочке, но как элемент, имеющий ва­кантные орбитали, способен принять еще пару электронов. К кислотам Лью­иса относятся также катионы металлов (Na + , Mg 2+ , Ag +), карбокатионы R 3 C + , нитроил-катион NО 2 + и др. В гетеролитических реакциях кислоты Льюиса участвуют как электрофильные реагенты. Ниже приведены некоторые приме­ры взаимодействия между кислотами и основаниями Льюиса:

Многие распространенные органические реакции относятся к кислотно­основным взаимодействиям в рамках теории Льюиса. Однако в этой теории гораздо сложнее дать количественную оценку кислотности и основности, и та­кая оценка может быть лишь относительной. Для этого определяют энергии взаимодействия различных соединений в строго определенных условиях (рас­творитель, температура) с одним и тем же стандартом, являющимся соответ­ственно кислотой или основанием Льюиса. Поэтому количественных измере­ний для кислот и оснований Льюиса сделано намного меньше, чем для кислот и оснований Брёнстеда.

Жесткие и мягкие кислоты и основания. Развитие теории Льюиса при­вело к созданию принципа жестких и мягких кислот и оснований (принцип ЖМКО, принцип Пирсона). Согласно принципу Пирсона, кислоты и основа­ния подразделяются на жесткие и мягкие.

Жесткие кислоты - это кислоты Льюиса, в которых акцепторные атомы малы по размеру, обладают большим положительным зарядом, большой элек­троотрицательностью и низкой поляризуемостью. Мягкие кислоты Льюиса со­держат акцепторные атомы большого размера с малым положительным заря­дом, небольшой электроотрицательностью и высокой поляризуемостью.

Низшая свободная молекулярная орбиталь (НСМО), которая участвует в связывании с орбиталью донора пары электронов, у жестких кислот имеет низкую энергию. Самой жесткой кислотой является протон. НСМО мягких кислот имеет высокую энергию. Мягкие кислоты содержат легко поляризуе­мые вакантные орбитали. Положительный заряд у атома - акцептора пары электронов мал вследствие делокализации или вообще отсутствует (так, мяг­кой кислотой является молекула иода).

Жесткие основания - это донорные частицы, обладающие высокой элек­троотрицательностью, низкой поляризуемостью, трудно окисляющиеся. Мяг­кие основания, напротив, - это донорные частицы с низкой электроотрица­тельностью, высокой поляризуемостью, довольно легко окисляющиеся. Термин «жесткое основание» подчеркивает, что соединение - донор пары электронов - прочно удерживает свои электроны. У жестких оснований выс­шая занятая молекулярная орбиталь (ВЗМО), которая участвует в связывании с орбиталью акцептора пары электронов, имеет низкую энергию (расположена близко к ядру атома). Атомами-донорами в жестких основаниях являются азот, кислород, фтор, хлор. Мягкие основания слабо удерживают свои валент­ные электроны, ВЗМО донора имеет высокую энергию. Донорами пары электронов выступают атомы углерода, серы, фосфора, иода.

Следует отметить, что понятия «жесткие» и «мягкие» кислоты и основания не равноценны понятиям «сильные» и «слабые» кислоты и основания. Это две независимые характеристики кислот и оснований. Принцип ЖМКО используется для качественного описания эффектив­ности протекания кислотно-основного взаимодействия: (!) жесткие кислоты лучше координируются с жесткими основаниями, мяг­кие кислоты - с мягкими основаниями. Концепция Пирсона основана на том, что взаимодействие между орбита­лями с близкими энергиями более эффективно, чем между орбиталями, имею­щими разную энергию.

Действие принципа ЖМКО можно проиллюстрировать следующим при­мером. При взаимодействии галогеноалканов с нуклеофилами (являющимися также и основаниями) могут происходить конкурентные реакции - нукле­офильного замещения или элиминирования. Реакция нуклеофильного за­мещения осуществляется посредством взаимодействия нуклеофила с атомом углерода, связанным с галогеном. В реакции элиминирования происходит также и отщепление протона от соседнего атома углерода под влиянием осно­вания.

При взаимодействии 1,2-дихлороэтана с жестким основанием (метоксид-ионом) вследствие атаки реагента на жесткую кислоту - протон пре­имущественно происходит реакция элиминирования. Мягкое основание - тиофеноксид-ион - предпочтительно реагирует с более мягкой кислотой - атомом углерода, в результате чего образуется продукт реакции нуклеофиль­ного замещения:

Кислота Льюиса - молекула или ион, имеющие вакантные электронные орбитали, вследствие чего они способны принимать электронные пары. Например, ионы водорода - протоны, ионы металлов (Ag + , Fe 3+), оксиды некоторых неметаллов (SO 3 , SiO 2), ряд солей (AlCl 3), вещества как BF 3 , Al 2 O 3 . Кислоты Льюиса, не содержащие ионов водорода, называются апротонными. Протонные кислоты рассматриваются как частный случай класса кислот.

Основание Льюиса - это молекула или ион, способные быть донором электронных пар: все анионы, аммиак и амины, вода,спирты, галогены.

Примеры химических реакций между кислотами и основаниями Льюиса:

· AlCl 3 + Cl − → AlCl 4 −

· BF 3 + F − → BF 4 −

· PCl 5 + Cl − → PCl 6 − .

Ионный потенциал представляет собой отношение электронного заряда иона к его эффективному радиусу.

Выражается отношением Z/r, где Z - заряд, r - радиус иона . Используется для характеристики взаимодействия иона в кристаллической решетке или в растворе

Жесткие основания, относятся донорные частицы, обладающие высокой электроотрицательностью, низкой поляризуемостью, трудно окисляющиеся. Соединение прочно удерживает свои электроны, его молекулярная орбиталь, пара электронов которой передается акцептору, имеет низкий уровень энергии Мягкие основания. Относятся донорные частицы с низкой электроотрицательностью, высокой поляризуемостью, довольно легко окисляющиеся. Они слабо удерживают свои валентные электроны, их молекулярные орбитали, обладают высоким уровнем энергии (электроны удалены от ядра атома).
Жесткие кислоты. входят кислоты Льюиса, в которых акцепторные атомы малы по размеру, обладают большим положительным зарядом, большой электроотрицательностью и низкой поляризуемостью. Молекулярная орбиталь имеет низкий уровень энергии. Мягкие кислоты. входят кислоты Льюиса, содержащие акцепторные атомы большого размера с малым положительным зарядом, с небольшой электроотрицательностью и высокой поляризуемостью. Молекулярная орбиталь имеет высокий уровень энергии. Суть принципа ЖМКО состоит в том, что жесткие кислоты преимущественно реагируют с жесткими основаниями, а мягкие кислоты - с мягкими основаниями. больших скоростях реакций образовании более устойчивых соединений

Билет №2 1. Галогены. Степени окисления. Диспропорционирование галогенов. Сопоставление окислительной способности. Галогеноводороды и галогеноводородные кислоты. Особенности HF. Галогениды металлов и неметаллов, их взаимодействие с водой. Оксиды галогенов.

В основном состоянии атомы галогенов имеют электронную конфигурацию nsnр5. фтора меньшему радиусу, большим значениям энергии ионизации и электроотрицательности. Сродство к электрону фтора меньше, чем хлора. фтора степеней окисления -1, 0.

Соединения галогенов в положительных степенях окисления проявляют окислительные свойства.

Галогены - самые активные неметаллы. Фтор взаимодействует практически со всеми простыми веществами, за исключением легких инертных газов. От фтора к иоду окислительная способность уменьшается, а восстановительная - увеличивается. Хлор реагирует с оксидами некоторых металлов: магния, алюминия, железа.

2MgO + 2С12 = 2MgCl2 + 02

Бром является сильным окислителем. В водной среде он окисляет серу до серной кислоты:

ЗВг2 + S + 4Н20 = бНВг + H2S04

манганат калия - до перманганата:

2К2Мп04 + Вг2 = 2КМп04 + 2КВг

Окислительные свойства иода выражены слабее, чем других галогенов. Иод не способен окислить не только кислород, но и серу. Йодиды восстановительные свойства. Под действием хлора, брома, пероксида водорода и азотной кислоты он окисляется в водной среде до йодноватой кислоты НЮ3:

3I2(тв.) + 10HNO3(100%) = 6НIO3 + 10NO2 + 2Н20

В стандартных условиях галогеноводороды - бесцветные газы с резким запахом. для HF значения температур плавления и кипения, Аномально высокие температуры плавления и кипения фтороводорода объясняются усилением межмолекулярного взаимодействия за счет образования водородных связей между молекулами HF. Твердый фтороводород состоит из

зигзагообразных полимерных цепей. Для НСI, НВг, HI образование водородных связей не характерно из-за меньшей электроотрицательности атома галогена. Водные растворы НС1, НВг и HI ведут себя как сильные кислоты. плавиковая HF и соляная НС1 кислоты с концентрированной серной кислотой не взаимодействуют, а НВг и HI ею окисляются:

2НВг + H2S04(koh4.) = Br2t + S02 + 2H20

8HI + H2S04(koh4.) = 4I2 + H2S + 4H20

Галогениды щелочных и щелочноземельных металлов являются ионными веществами. Они растворимы в воде, имеют высокие температуры плавления и кипения.

Гипогалогенитные кислоты НХО известны лишь в разбавленных водных растворах.

Гипогалогенитные кислоты являются слабыми. кислотные свойства в ряду НСЮ-НВгО-НЮ ослабляются, а основные увеличиваются. Иодноватистая кислота является уже амфотерным соединением.

Растворы гипогалогенитов имеют сильнощелочную реакцию, а пропускание через них С02 приводит к образованию кислоты:

NaCIO + Н20 + С02 = NaHC03 + НСЮ

Гипогалогенитные кислоты и их соли являются сильными окислителями:

Из оксокислот НХ02 известна хлористая кислота НСЮ2.

НСlO2 является кислотой средней силы.

Оксокислоты НХ03 более устойчивые, чем гипогалогенитные кислоты. Хлорноватая НСЮ3 и бромноватая НВЮ3 кислоты получены в растворах с концентрацией ниже 50%, а йодноватая НЮ3 выделена как индивидуальное вещество. Растворы НСlO3 и НВrO3 получают действием разбавленной H2S04 на растворы соответствующих солей, например:

Ва(СlO3)2 + H2S04 = 2НСЮ3 + BaS04

Йодноватую кислоту получают окислением иода дымящей азотной

кислотой, раствором пероксида водорода:

I2 + 5Н202 = 2НI3+4Н20.

НХ03 являются сильными кислотами. В ряду НСlO3- НВrO3- НI3 наблюдается некоторое уменьшение силы кислот.

Xлорная кислота НС104. выделяется в виде гидратов НС104*Н20. Бромная кислота НВг04 известна лишь в растворах.

Жидкий HF состоит из полимерных цепей HF.

Связь галоген-кислород является непрочной, что вызвано сильным взаимным отталкиванием атомов с высокой

Электроотрицательностью. оксиды галогенов неустойчивы. Дифторид кислорода OF2 может быть получен

2F2 + 2NaOH =OF2 + 2NaF + H20

Дифторид кислорода - сильный окислительно-фторирующий агент.

При пропускании электрического разряда через охлажденную смесь фтора и кислорода может получен другой фторид - 02F2.

Оксид хлора (I) С120 Его получают

3HgO + 2С1 2 = Hg30 2 Cl 2 + Cl 2 O

Соединение крайне неустойчивое.

2. Титан, цирконий, гафний. Сравнение окислительно-восстановительных свойств. Взаимодействие металлов с растворами кислот и щелочей. Отличие соединений Ti от Zr и Hf. Реакции соединений Ti 2+ и Ti 3+ . Соединения Э 4+ : оксиды, a- и b-формы кислот. Галогениды, их гидролиз. Соли оксокатионов. Галогенидные комплексы.

Ионизации при переходе от титана к цирконию заметно снижается.

Лишь первый из элементов группы - титан проявляет высокую химическую активность. У гафния лантаноидное сжатие. характерна степень окисления +4, большинство соединений ковалентные. В ряду Ti - Zr-Hf устойчивость соединений с высшей степенью окисления возрастает. Так, для титана устойчивы оксиды ТЮ, Ti203, Ti02 и фториды TiF2, TiF3, TiF4, а для циркония и гафния - только диоксиды Zr02, Hf02 и тетрафториды ZrF4, HfF4. Склонность к проявлению низких степеней окисления +2, +3 у титана выше, чем у его тяжелых аналогов.. Соединения циркония(Ш) и гафния(Ш) в водных растворах не существуют. степени окисления усиливаются основные и восстановительные свойства

Для титана типично координационное число 6 и, реже, 4; циркония и гафния 7 и 8.

Реакция с галогенами начинается при слабом нагревании всегда образуются тетрагалогениды МХ4.

В отличие от циркония и гафния титан при нагревании реагирует с соляной и разбавленной серной кислотами

2Ti + 6НС1 = 2TiCl3 + ЗН2Т

Титан растворяется также в концентрированной плавиковой кислоте с образованием зеленых растворов.

2Ti + 6HF = 2- + Ti2+ + ЗН2Т

Ti + 6HF + 02 = H2 + 2Н20

Крайне медленно титан растворяется в разбавленной и концентрированной азотной кислоте, а также в царской водке - протеканию реакции препятствует образование слоя

Ti + 4H2S207 - Ti(S04)2 + 2S02T + 4H2S04

При нагревании порошок титана медленно растворяется в концентрированных растворах и расплавах щелочей:

Ti + 2NaOH + H20 = Na2Ti03 + 2H2

Цирконий и особенно гафний более устойчивы к окислению кислотами. не реагируют ни с одной из разбавленных кислот за исключением плавиковой. цирконий и гафний энергично реагируют лишь со смесью азотной и плавиковой кислот:

ЗМ + 4HN03+ 21HX = ЗН3[МХ7] + 4NO + 8Н20

Медленнее протекает взаимодействие циркония и гафния с плавиковой кислотой и концентрированной серной кислотой:

M + 7HF = H3 +2H2T

М + 5H2S04 = H2 + 2S02t + 4H20

Концентрированная HN03 повышает коррозионную стойкость металлов. Цирконий и гафний с щелочами не реагируют.

Дж. Льюисом была предложена более общая теория кислот и оснований.

Основания Льюиса – это доноры пары электронов (спирты, алкоголят-анионы, простые эфиры, амины и т.д.)

Кислоты Льюиса – это акцепторы пары электронов, т.е. соединения, имеющие вакантную орбиталь (ион водорода и катионы металлов: H + , Ag + , Na + , Fe 2+ ; галогениды элементов второго и третьего периодов BF 3 , AlCl 3 , FeCl 3 , ZnCl 2 ; галогены; соединения олова и серы: SnCl 4 , SO 3).

Таким образом, основания Бренстеда и Льюиса – это одни и те же частицы. Однако основность по Бренстеду есть способность присоединять только протон, в то время как основность по Льюису – понятие более широкое и означает способность к взаимодействию с любой частицей, имеющей низколежащую свободную орбиталь.

Кислотно-основное взаимодействие по Льюису есть доноро-акцепторное взаимодействие и любую гетеролитическую реакцию можно представить как взаимодействие кислоты и основания Льюиса:

Единой шкалы для сравнения силы кислот и оснований Льюиса не существует, так как их относительная сила будет зависеть от того, какое вещество взято за стандарт (для кислот и оснований Бренстеда таким стандартом является вода). Для оценки легкости протекания кислотно-основного взаимодействия по Льюису Р. Пирсоном была предложена качественная теория “жестких” и “мягких” кислот и оснований.

Жесткие основания обладают высокой электроотрицательностью и низкой поляризуемостью. Они трудно окисляются. Их высшие занятые молекулярные орбитали (ВЗМО) имеют низкую энергию.

Мягкие основания имеют низкую электроотрицательность и высокую поляризуемость. Они легко окисляются. Их высшие занятые молекулярные орбитали (ВЗМО) имеют высокую энергию.

Жесткие кислоты имеют высокую электроотрицательность и низкую поляризуемость. Они трудно восстанавливаются. Их низшие свободные молекулярные орбитали (НСМО) имеют низкую энергию.

Мягкие кислоты обладают низкой электроотрицательностью и высокой поляризуемостью. Они легко восстанавливаются. Их низшие свободные молекулярные орбитали (НСМО) имеют высокую энергию.

Самая жесткая кислота - Н + , самая мягкая – СН 3 Hg + . Наиболее жесткие основания – F - и OH - , наиболее мягкие – I - и Н - .

Таблица 5. Жесткие и мягкие кислоты и основания.

Промежуточные

H + , Na + , K + , Mg 2+ , Ca 2+ , Al 3+ , Fe 3+ , BF 3 , AlCl 3 , RC + =O

Cu 2+ , Fe 2+ , Zn 2+ , R 3 C +

Ag + , Hg 2+ , I 2

Основания

H 2 O, OH - , F - , ROH, RO - , R 2 O, NH 3 , RNH 2

ArNH 2 , Br - , C 5 H 5 N

R 2 S, RSH, RS - , I - , H - , C 2 H 4 , C 6 H 6

Принцип жестких и мягких кислот и оснований Пирсона (принцип ЖМКО):

Жесткие кислоты преимущественно взаимодействуют с жесткими основаниями, а мягкие кислоты – с мягкими основаниями.

Это выражается в больших скоростях реакций и в образовании более устойчивых соединений, так как взаимодействие между близкими по энергии орбиталями эффективнее, чем взаимодействие между орбиталями, значительно различающимися по энергии.

Принцип ЖМКО используют для определения преимущественного направления конкурирующих процессов (реакции элиминирования и нуклеофильного замещения, реакции с участием амбидентных нуклеофилов); для направленного создания детоксикантов и лекарственных препаратов.

Существуют, однако, реакции, которые по здравому смыслу должны относиться к кислотно-основным, но на самом деле не подпадают под определение Брёнстеда-Лоури. К ним относятся, например, взаимодействия:

СаО+SO 3 ®CaSO 4 NH 3 +BF 3 ®NH 3 BF 3

Для описания реакций подобного типа Г. Льюис (в 1923 г.) предложил новое определение кислот и оснований. Согласно его определению:

аммиак выступает в роли основания, а трифторид бора в роли кислоты. Определение основания, данное Льюисом, включает ос­нования Брёнстеда-Лоури. Такие кислоты Льюиса, как BF 3 и SO 3 , не являются кислотами Брёнстеда-Лоури, а такие кислоты, как НС1, H 2 SO 4 и СН 3 СООН, не являются кислотами Льюиса.

Теория кислот и оснований Брёнстеда-Лоури позволяет коли­чественно определять их силу, что нельзя сказать о теории Льюи­са. Следует остановиться на электронной теории кислот и основа­ний, предложенной Г. Льюисом. Как было отмечено выше, согласно этой теории основанием является вещество, поставляю­щее пару электронов для образования химической связи, а кисло­той - вещество, принимающее электронную пару (см. выше).

Определение Г. Льюиса включает кислоты и те соединения, которые не содержат протонов, но удовлетворяют тем критери­ям, которые он сформулировал для характеристики кислот и оснований:

1. Взаимодействие кислот с основаниями происходит быстро.

2. Кислота или основание вытесняют более слабую кислоту или основание из соединений.

3. Кислоты и основания можно титровать одно другим в присут­ствии индикаторов.

4. Кислоты и основания являются хорошими катализаторами хи­мических реакций.

Примером кислотно-основного взаимодействия будут (по про­тонной теории):

Как видно из этих примеров, в некоторых случаях характе­ристики вещества по теории Льюиса и по протонной теории кис­лот и оснований совпадают (NH 3 и ОН - - основания, Н 3 О + , НСl - кислоты). Вещества же, которые являются кислотами или осно­ваниями только по теории Льюиса, называются основаниями и кислотами Льюиса. Итак, BF 3 - кислота Льюиса.