Конспект по физике на тему генератор. Урок на тему «Получение переменного электрического тока

План урока.

Дисциплина: Электротехника и электроника.

Тема: Генераторы постоянного тока.

Тип урока: урок изучения нового материала.

Вид урока: лекция

Метод обучения: объяснительно-иллюстративный

Цели урока:

Обучающая: сформировать у учащихся понятие о назначении ГПТ, его устройстве и способах включения.

Задачи:

Рассказать о назначении ГПТ;

Рассмотреть устройство ГПТ;

Ознакомить схемами включения ГПТ;

Развивающая цель: развить практико-ориентированное мышление.

Задачи:

Развить способность видеть взаимосвязь законов, явлений электротехники и применение их на практике;

Развить способность сравнивать и анализировать.

Воспитательная цель: воспитывать положительное отношение к знаниям.

Задачи: воспитывать умение видеть результаты своего труда и оценивать их.

Наглядность на уроке:

Макет машины постоянного тока.

Плакат МПТ;

Видеоролик;

Электронный образовательный ресурс.

Ход урока:

1. Организационный момент:

Приветствие

Проверка присутствующих

Организация внимания.

2. Целеполагание и мотивация:

Постановка цели перед учащимися

Ознакомление студентов планом урока

Формирование установок на восприятие и осмысление учебной информации.

3. Актуализация ранее усвоенных знаний:

Вопросы:

Какая электическая машина называется генератором?

На каком явлении основан принцип действия генераторов?

Какое электротехническое устройство называется электромагнитом и для чего оно предназначено?

От чего зависит величина ЭДС, наводимой в рамке?

Какое напряжение снимается со щеток?

4. Формирование новых понятий.

Основные узлы ГПТ, их назначение, конструктивные особенности.Материалы для их изготовления.

Схемы включения ГПТ. Характеристики ГПТ при различных схемах включения. Самовозбуждение ГПТ.




Генераторы с независимым возбуждением.
Характеристики генераторов

Магнитное поле генератора с независимым возбуждением создается током, подаваемым от постороннего источника энергии в обмотку возбуждения полюсов.
Магнитное поле генераторов с независимым возбуждением может создаваться
от постоянных магнитов.


Внешняя характеристика генератора


Генераторы с самовозбуждением.
Принцип самовозбуждения генератора
с параллельным возбуждением

Недостатком генератора с независимым возбуждением является необходимость иметь отдельный источник питания. Но при определенных условиях обмотку возбуждения можно питать током якоря генератора.
Самовозбуждающиеся генераторы имеют одну из трех схем: с параллельным, последовательным и смешанным возбуждением. На рис. 10 изображен генератор с параллельным возбуждением.

Обмотка возбуждения подключена параллельно якорной обмотке. В цепь возбуждения включен реостат R в . Генератор работает в режиме холостого хода.
Чтобы генератор самовозбудился, необходимо выполнение определенных условий.
Первым из этих условий является
наличие остаточного магнитного потока между полюсами. При вращении якоря остаточный магнитный поток индуцирует в якорной обмотке небольшую остаточную ЭДС.


5. Закрепление полученных знаний:

Заклеить рисунок МПТ в тетрадь и записать названия основных узлов согласно нумерации на рисунке.

Какие способы возбуждения ГПТ Вы знаете?

Каково назначение коллектора?

6. Подведение итогов урока.

Что нового узнали на уроке?

Что для вас было наиболее сложным?

Чему научились?

Выставление оценок.

Задание на дом.

Конспект урока физики в 9 классе по теме

«Получение переменного электрического тока. Генератор»

Цели урока: выяснить условия существования переменного тока; познакомиться с устройством трансформатора, рассмотреть принцип его действия, достоинства, практическое применение.
Задачи урока:
Образовательные:
-создание условий для формирования представлений о переменном электрическом токе; генераторе.
Развивающие:
-формирование умения делать выводы, обобщать полученные сведения;
-формирование у учащихся навыков работы с источниками информации
-развивать навыки логического мышления, умение обосновывать свои высказывания, делать выводы.
Воспитательные:
- формирование положительной мотивации к учебному труду, коммуникативных умений;
- формирование интереса к познанию окружающего мира;
- формировать чувство гордости за развитие отечественной техники;
- развивать интерес к рабочим профессиям.
Тип урока: урок изучения нового материала.

До начала урока демонстрируется таблица с комментированием.

1 этап. Мотивация.

На доске эпиграф: «...а какая польза может быть от новорожденного?» М. Фарадей.

Проверка д/з

«Да-нет»

    Верно ли, что явление электромагнитной индукции открыл Никола Тесла?

    Верно ли, что возникающий в замкнутом контуре индукционный ток своим магнитный действием противодействует тому изменению магнитного потока, которым он вызван?

    При приближении магнита к сплошному кольцу оно, притягиваясь, следует к магниту?

    При удалении магнита от разрезанного кольцу оно, притягиваясь, следует за магнитом?

    Прибор для демонстрации правила Ленца нельзя изготовить из железа?

В 1821 году Майкл Фарадей написал в своем дневнике: «Превратить магнетизм в электричество», а в 1831 году открыл явление электромагнитной индукции. Нарисуйте схему эксперимента.

Однажды Майкл Фарадей читал лекции в Лондонском Королевском университете, и одна из слушательниц его спросила «Какая польза может быть от такого малого тока?» На это Фарадей ей ответил: «А какая польза может быть от новорожденного?»

    Тема урока:Производство и передача электроэнергии. Генератор.

Задачи: Выяснить, какие устройства порождают переменный электрический ток, изучить принцип их действия, выяснить принципы передачи тока.

3 этап. Изучение нового материала. Генератор. Устройство и принцип действия.

Генератор - устройство, которое преобразует энергию того или иного вида в электрическую. Еги принцип действия основан на явлении электромагнитной индукции. Простейший генератор состоит из двух частей - подвижного ротора и неподвижного статора. Видео 1мин46 сек.

Эксперимент (если получится)

4 этап. Первичное закрепление.

Работа в группах. Рассмотрите схему генератора. Укажите его составные элементы, объясните, как он работает. При необходимости пользуйтесь стр. 174 учебника.

Где производят электрический ток? На электростанциях. Какие виды электростанций вы знаете? Какие превращения энергии там происходят?

Задание 4. Таблица. Работа в парах.

Задание 5. Лови ошибку.

Лови ошибку.

Переменный электрический ток производится на электрических станциях с помощью акселератора.

Генератором называется устройство, которое преобразует энергию любого вида в механическую.

Электромеханический генератор состоит из подвижного ротора и неподвижного стартера.

В основе действия генератора лежит правило буравчика.

Генераторы используются в быту, в промышленности и в транспорте.

Задание 6. В тестовой форме (по времени)

5 этап. Рефлексия. Так какая же польза от новорожденного? Благодаря огромной теоретической работе ученых по изучению индукционного тока, сегодня в каждом доме есть электроэнергия. Подведение итогов. Заполнение таблицы.

Д/З подготовить доклады по электростанциям.

Цели урока:

Обучающие:

  1. Показать преимущества электрической энергии перед другими видами энергии.
  2. Дать понятие о принципиальном устройстве генератора переменного тока.
  3. Осветить экологические проблемы, связанные с выработкой электроэнергии.

Развивающая: Развитие логического мышления, профессиональной лексики.

Воспитывающая : Воспитывать самосознание и настойчивость в овладении профессией.

Оборудование:

  • компьютер,
  • проектор,
  • источники тока – батарея карманного фонарика,
  • фотоэлемент,
  • модель генератора постоянного тока,
  • DVD - диск «Виртуальная школа Кирилла и Мефодия»,
  • проверочный тест.

Тип урока: комбинированный, время проведения 40 минут.

Основные этапы урока:
  1. Организационный момент (2 мин.)
  2. Актуализация опорных знаний (3-5 мин.)
  3. Изучение нового материала (15 мин.)
  4. Закрепление новой темы (5 мин.)
  5. Проверка знаний (10 мин.)
  6. Подведение итогов. (3 мин.)

Ход урока

  1. Организационный момент - приветствие, настрой деятельности на успех.(1 Слайд)

Здравствуйте ребята, сегодня тема нашего урока «Генерирование электрической энергии. Генератор переменного тока».

Эта тема созвучна с вашей профессией, вы будите изучать ее на уроках спецтехнологии, электротехники, на классном часе «Вы будущие энергетики» мы встречались со специалистами Сургутских ГРЭС, вы успешно прошли производственную практику, и многое уже знаете. Поэтому я рассчитываю на вашу помощь, заинтересованность. Надеюсь, что сегодня вы узнаете много нового и полезного.

  1. Актуализация опорных знаний – фронтальная беседа со студентами.

Прежде чем мы будем говорить о производстве электрического тока, давайте вспомним:

Вопрос : Что называют электрическим током?

Ответ: Электрическим током называется упорядоченное движение заряженных частиц.

Вопрос : Какие вам известны источники тока?

Ответ: Аккумуляторы, батарейки и т. д.

У меня на столе всем известные источники тока: батарейка, фотоэлемент, модель индукционного генератора. Область применения каждого из перечисленных видов определяется их характеристиками. Давайте выясним, какие у них достоинства и недостатки и можно ли их применять повсеместно?

Химические источники тока: гальванические элементы; батареи аккумуляторов; ртутная батарейка, используемая в часах, калькуляторах и слуховых аппаратах, дает 1,4В; традиционная батарейка для карманного фонарика, дает 4,5 В. (демонстрация)

Достоинства – компактность, возможность использовать как автономный источник энергии.

Недостатки – небольшая энергоемкость, высокая стоимость энергии, недолговечность, проблема утилизации отходов.

Термоэлементы, фотоэлементы, солнечные батареи (демонстрация)

Достоинства – безмашинный способ получения энергии.

Недостатки – малый КПД, зависимость от погодных условий.

Преобладающую роль в наше время играют электромеханические

индукционные генераторы постоянного и переменного тока.

Практически они дают всю используемую энергию. Какие они имеют достоинства, преимущества и недостатки, нам предстоит выяснить сегодня на уроке.

  1. Объяснение новой темы.

Так как мы сегодня изучаем генераторы переменного тока, давайте вспомним:

Вопрос : Что такое переменный ток?

Ответ: Переменный ток можно рассматривать как вынужденное колебательное движение свободных электронов или вынужденные электромагнитные колебания силы тока и напряжения, меняющееся со временем по гармоническому закону.

Переменный ток имеет преимущество перед постоянным, потому что напряжение и силу тока можно в очень широких пределах преобразовать (трансформировать) почти без потерь, а такие преобразования необходимы во многих электро- и радиотехнических устройствах. Но особенно большая необходимость трансформации напряжения и тока возникает при передаче электроэнергии на большие расстояния. Электрическая энергия обладает преимуществом перед всеми другими видами энергии: ее можно передавать по проводам на огромные расстояния со сравнительно малыми потерями и удобно распределять между потребителями. Главное же в том, что эту энергию с помощью достаточно простых устройств легко превратить в другие формы: механическую, тепловую, световую и т.д.

(2 слайд) Запишите в тетради преимущества переменного тока.

В современной энергетике применяются индукционные генераторы переменного тока, действие которых основано на явлении электромагнитной индукции.

Вопрос : Вспомните, что такое электромагнитная индукция, и кто открыл это явление?

Ответ: Майкл Фарадей открыл явление электромагнитной индукции, которое заключается в возникновении индукционного тока под действием переменного магнитного поля.

(3 слайд) После открытия этого явления многие скептики, сомневаясь, спрашивали: «Какая от этого польза?»

На что Фарадей ответил: «Какая может быть польза от новорожденного?»

Прошло немногим более половины столетия и, как сказал американский физик Р.Фейнман, «бесполезный новорожденный превратился в чудо-богатыря и изменил облик Земли так, как его гордый отец не мог себе и представить».

И этим богатырем, изменившим облик Земли, является генератор.

Генератор – это устройство, преобразующее энергию того или иного вида в электрическую энергию (запишите определение в тетрадь).

(4 слайд)

Электрический ток вырабатывается в генераторах - Откройте учебник на странице 106 рисунок 97. Давайте вместе назовем и запишем в тетради, как устроен генератор, его основные части.

Что обозначено цифрой 1,2,3,4,5,6,7?

    Ротор, вращающаяся часть генератора, создает магнитное поле от электромашины постоянного тока.

  1. Статор, состоит из отдельных пластин для уменьшения нагрева от вихревых токов, пластины сделаны из электротехнической стали.
  2. Щетки, неподвижные пластины, прижаты к кольцам и осуществляют связь обмотки ротора с внешней цепью.
  3. Кольца, чтобы подводить ток к ротору и отводить из обмотки ротора во внешнюю цепь при помощи скользящих контактов.
  4. Турбина, сочетание турбины с генератором переменного тока называется турбогенератором.
  5. Станина, корпус, внутри которой размещены статор и ротор.
  6. Возбудитель, генератор, вырабатываемый постоянный ток, который подводят к вращающему электромагниту.

В настоящее время существуют различные модификации индукционных генераторов. Но все они состоят, из одних и тех же, частей – это магнит или электромагнит, создающий магнитное поле, и обмотка в которой индуцируется ЭДС.

Один из сердечников (обычно внутренний) вращается вокруг вертикальной или горизонтальной оси – называется ротором. Неподвижный сердечник с его обмоткой называют – статором.

Обратите внимание, в данной модели генератора вращается проволочная рамка, которая является ротором, магнитное поле создает неподвижный, постоянный магнит. При движении проводника его свободные заряды движутся вместе с ним. Поэтому на заряды со стороны магнитного поля действует сила Лоренца. ЭДС индукции, следовательно, имеет магнитное происхождение.

На многих электростанциях земного шара именно сила Лоренца вызывает появление тока. ε = ε m sin ωt

В больших промышленных генераторах вращается именно электромагнит, который является ротором. Обмотки, в которых наводится ЭДС, вложены в пазах статора – появление ЭДС в неподвижных обмотках статора объясняется возникновением в них вихревого электрического поля, порожденного изменением магнитного потока при вращении ротора.

Из закона электромагнитной индукции следует: ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром.

Какова же должна быть скорость изменения магнитного потока, скорость вращения ротора, если в некоторых установках применяются токи в несколько килогерц и даже мегагерц? Для примера, попробуйте рассчитать скорость вращения ротора для стандартной частоты промышленного тока.

Чтобы ответить на данный вопрос, вспомните:

Вопрос :Чему равна частота промышленного тока?

Ответ: Стандартная частота промышленного переменного тока равна 50 Гц во многих странах мира, в США частота равна 60Гц, это означает, что на протяжении 1 с. ток 50 раз течет в одну сторону и 50 раз в противоположную.

Тогда сколько колебаний будет происходить в 1 минуту?

Умножим на 60 сек. получается 3000 об/мин. Такая скорость нереальна и чтобы уменьшить скорость вращения, используют многополюсный магнит.

Частота наводимой ЭДС определяется формулой ν = p*n,

где р – число пар полюсов индуктора, n – частота вращения ротора.

Так, роторы генераторов Угличской ГЭС на Волге имеют 48 пар полюсов, и скорость их вращения уменьшается, становится 62,5 об/мин.

Мы живем в 21 веке и основой цивилизованного образа жизни, следовательно, и научно-технического прогресса, является энергия, которой требуется все больше и больше. Казалось бы, вырабатывайте ее сколько угодно, пока есть полезные ископаемые, есть машины, вырабатывающие эту энергию. Но здесь возникает проблема.

Эту проблему можно назвать - проблема «трех Э »: Энергетика + Экономика + Экология. Для бурного развития экономики , требуется все больше и больше энергии , увеличение выработки энергии - ведет к ухудшению экологии , наносит большой вред окружающей среде.

Ведь энергетика является одной из самых загрязняющих отраслей народного хозяйства. При неразумном подходе происходит нарушение нормального функционирования всех компонентов биосферы (воздуха, воды, почвы, животного и растительного мира), а в исключительных случаях, подобных Чернобылю, под угрозой оказывается и сама жизнь. Поэтому главным должен стать подход с экологических позиций, учитывающих интересы не только настоящего, но и будущего.

Между тем, ТЭС являются одними из основных загрязнителей атмосферы твердыми частицами золы, окислами серы и азота, а также углекислым газом, способствующим возникновению «парникового эффекта». Над городами образуются, так называемые острова тепла, из-за усиленного выброса энергии которых, нарушается нормальное течение атмосферных процессов. В сентябре этого года, мы все с вами были свидетелями образования торнадо над водохранилищем ГРЭС -2 в городе Сургуте.

Вопрос : Кто сможет объяснить это явление?

Ответ: Над поверхностью водохранилища образовался теплый воздушный фронт, в то время когда температура и давление окружающего воздуха были сравнительно низкими. Встреча, этих двух потоков и привела к образованию смерча.

Важнейшими направлениями экологизации научно-технического процесса, должны стать – внедрение ресурсосберегающих и безотходных технологий; переход к чистым и неисчерпаемым источникам энергии.

Уже разрабатываются, так называемые топливные элементы, в которых энергия освобождается в результате реакции водорода с кислородом, получили широкое применение МГД – генераторы. Строят электростанции разного типа, геотермальные, ветряные, солнечные и т.д.

    1. Закрепление новой темы - решение качественных и количественных задач.

Какими бы ни были типы электростанций, главное устройство на любом из них – это генератор.

Вопрос : Что называют генератором?

Ответ: Генератор – это устройство, преобразующее энергию того или иного вида в электрическую.

Вопрос : Назовите основные части генератора.

Ответ: Ротор, статор.

Вопрос : Фонари по дороге стоят одиноко.

Десять герц – частота переменного тока.

Кто ответит мне ясно, без тени смущенья:

Этот ток применяют ли для освещения?

Ответ: Нет.

Вопрос : Генератор переменного тока имеет на роторе 6 пар полюсов. Какой должна быть частота вращения ротора, чтобы генератор вырабатывал ток стандартной частоты?

Ответ: (500 об/мин)

  1. Проверка знаний - проверь соседа!

А сейчас проверим, на сколько, вы усвоили данный материал. У вас на столах лежат тестовые задания по теме нашего урока и карточка, в которую вы заносите правильный ответ. Кто ответит правильно на 6 вопросов, получит «5», на 4-5 вопросов, оценку - «4», за 3 правильных ответа получит «3».

  1. Подведение итогов. (10 слайд)

Сегодня на уроке, мы с вами разобрали принцип действия генератора, этого внушительного сооружения из проводов, изоляционных материалов, стальных конструкций. Не перестаю удивляться, как при таких огромных размерах в несколько метров важнейшие детали генераторов изготавливаются с точностью до миллиметра. Нигде в природе нет такого сочетания движущихся частей, которые могли бы порождать, электрическую энергию столь же непрерывно и экономично. А теперь постарайтесь ответить на вопрос, поставленный в начале урока.

Какие достоинства и недостатки у генератора переменного тока?

О трехфазном генераторе вы узнаете на уроках электротехники, а к следующему уроку попрошу вас приготовить сообщение о новых, современных типах генераторов.

ЛАБОРАТОРНАЯ РАБОТА №8

Испытание генератора постоянного тока

Цель работы:

1. Изучить принцип действия, конструкцию и свойства генераторов постоянного тока с параллельным и независимым возбуждением.

2. Ознакомиться с методикой снятия основных характеристик генераторов: холостого хода, внешней, регулировочной.

3. Выявить по снятым характеристикам рабочие свойства генераторов.

Указания к работе

Используя рекомендованную литературу, ознакомьтесь с принципом действия, конструкцией и назначением основных частей генератора. Обратите внимание на конструкцию таких элементов, как якорь, коллектор, обмотка возбуждения. Четко уясните процессы, происходящие в генераторе и роль коллектора. Уясните процесс самовозбуждения. Выясните, какие характеристики определяют эксплуатационные возможности генератора и почему они имеют такой вид.

Генератор постоянного тока (рис. 1) состоит из двух частей: неподвижной и вращающейся. Неподвижная часть (статор) является остовом машины и одновременно служит для создания магнитного потока. Во вращающейся части, называемой якорем (ротором), индуцируется электродвижущая сила - ЭДС.

Неподвижная часть состоит из станины (1), главных полюсов (2) с обмоткой возбуждения (3) и дополнительных полюсов (4), уменьшаемых искрение под щетками.

Якорь имеет сердечник (5), набираемый из тонких стальных листов, обмотку якоря (6), заложенную в пазы сердечника и коллектор (7). На поверхность коллектора наложены угольно-графитовые щетки (8), обеспечивающие скользящий контакт с обмоткой вращающегося якоря. Коллектор имеет форму цилиндра и выполняется из изолированных медных пластин - ламелей - к которым подсоединены секции якорной обмотки. Вращаясь вместе с обмоткой, коллектор выполняет роль механического выпрямителя.

Обмотка возбуждения (3) создает главный магнитный поток Ф полюсов. В генераторах с независимым возбуждением она питается от постороннего источника постоянного тока (выпрямителя, аккумулятора и т.п.). С генератором с параллельным возбуждением обмотка главных полюсов подключена к главным щеткам, т.е. параллельно цепи якоря. В связи с этим для возникновения магнитного потока и ЭДС необходим хотя бы слабый остаточный магнитный поток. Благодаря наличию остаточного магнетизма возникает процесс самовозбуждения генератора.

Рис. 1. Конструкция генератора постоянного тока

  1. Станина.
  2. Главные полюса.
  3. Обмотка возбуждения.
  4. Дополнительные полюса.
  5. Сердечник.
  6. Обмотка якоря.
  7. Коллектор.
  8. Угольно-графитовые щетки.

ЭДС, индуцируемая в обмотке якоря, определяется следующим выражением:

где: р - число пар полюсов генератора;

N - число активных проводников обмотки якоря;

А - число пар параллельных ветвей обмотки якоря;

Угловая частота вращения в (рад/с)

Ф - магнитный поток полюса.

Обычно используется сокращенная запись выражения (1):

где - конструктивная постоянная.

Поскольку в паспорте генератора приведена частота вращения n, выраженная в (об/мин), то на практике удобнее пользоваться следующей формулой для ЭДС:

где .

Рис. 2. Характеристика холостого хода

Зависимость ЭДС, индуцируемой в обмотке якоря от тока возбуждения I B при постоянной частоте вращения n и токе нагрузки равном нулю, называют характеристикой холостого хода.

Характеристика холостого хода (рис. 2) имеет вид петли гистерезиса и отражает свойства магнитной цепи генератора. По ней можно судить о степени использования (насыщения) стали, остаточном магнетизме, потерях в стали.

Эксплуатационные свойства генератора постоянного тока определяются величиной изменения напряжения при изменении тока нагрузки.

Зависимость напряжения генератора U от тока нагрузки I (или тока якоря) при постоянной частоте вращения n и неизменном сопротивлении цепи обмотки возбуждения, называют внешней характеристикой.

Из сравнения внешних характеристик, приведенных на рис. 3, видно, что напряжение на зажимах генератора с параллельным возбуждением (кривая 1) уменьшается с ростом тока нагрузки в большей степени, чем у генератора с независимым возбуждением (кривая 2).

Напряжение генератора определяется следующим выражением:

U = E - I я r я ,

где r я - сопротивление якорной цепи;

I я - ток якоря. (В генераторах с параллельным возбуждением ток якоря принимают равным току нагрузки I, поскольку мал ток возбуждения I B ).

Рис. 3. Внешние характеристики генераторов

Уменьшение напряжения с ростом тока нагрузки (или тока якоря) происходит по следующим причинам:

Увеличение падения напряжения в цепи якоря (I я r я );

Реакция якоря оказывает размагничивающее действие на магнитный поток полюсов. Вследствие этого уменьшается ЭДС.

В генераторах с параллельным возбуждением уменьшается ток обмотки возбуждения I В . Уменьшение тока I B вызывает уменьшение магнитного потока, ЭДС и напряжения генератора. Следствием этого является дальнейшее уменьшение тока возбуждения и размагничивание полюсов.

Рис. 4. Регулировочная характеристика

У генератора с независимым возбуждением отсутствует третья причина, поэтому напряжение изменяется менее интенсивно.

Регулировочная характеристика (рис. 4) показывает зависимость тока возбуждения I B от тока нагрузки I при постоянном напряжении на зажимах генератора U и постоянной частоте вращения n. Регулировочная характеристика показывает как нужно изменять ток возбуждения, чтобы напряжение генератора оставалось неизменным.

Генераторы постоянного тока применяются в электрохимии для питания электролизных ванн, для сварки, в качестве возбудителей синхронных машин, в регулируемом электроприводе и т.п.

Рабочее задание

а) Генератор с параллельным возбуждением

Подготовьте лабораторную экспериментальную установку для снятия основных характеристик генератора с параллельным возбуждением. Схема установки приведена на рис. 5. На схеме приняты следующие обозначения:

Якорь генератор постоянного тока;

АД

Приводной асинхронный двигатель. Обмотка статора С1 - С6 соединяется по схеме треугольник установкой перемычек, показанных жирными линиями;

Я 1 , Я 2

Выводы обмотки якоря;

Д 1 , Д 2

Выводы обмотки дополнительных полюсов;

ОВГ

Обмотка возбуждения генератора;

Ш 1 , Ш 2

Выводы обмотки возбуждения;

Регулировочный резистор для изменения тока возбуждения I B ;

Нагрузочные резисторы;

Т1 ÷ Т9

Тумблеры нагрузочных резисторов;

Вольтметр переносной Э533, 300 В;

А 1

Амперметр переносной Э 514 (Э 526), 5 А. Измеряет ток нагрузки генератора, I Г ;

А В

Амперметр переносной Э 513 (Э 525), 0,5 А; 1 А. Измеряет ток обмотки возбуждения генератора;

Клеммы 4-х проводной трехфазной питающей сети. Расположены на панели питания в правой части стенда;

0 ± 250 В

Клеммы источника регулируемого напряжения постоянного тока для подключения обмотки возбуждения генератора. Расположены на панели питания в правой части стенда.

Ознакомьтесь с оборудованием стенда. Выпишите паспортные данные машины постоянного тока типа 2ПН90МУХЛ4, используемой в качестве генератора:

Рис. 5. Схема генератора с параллельным возбуждением

Структура условного обозначения машин постоянного тока серии 2П:

2 П Н 90 М УХЛ4

порядковый номер серии

климатическое исполнение

машина постоянного тока

условная длина сердечника

исполнение по роду защиты и охлаждения, Н-защищеное

высота оси вращения в мм

с самовентиляцией

Ознакомьтесь с техническими характеристиками приводного двигателя АД, которым служит трехфазный асинхронный короткозамкнутый двигатель серии 4А.

Частота вращения асинхронного двигателя мало зависит от нагрузки на валу. В связи с этим при снятии всех характеристик генератора контроль за частотой вращения можно не осуществлять.

Выпишите в таблицу 1 основные сведения об электроизмерительных приборах.

  • Таблица 1

Соберите схему (рис. 5) и предъявите цепь для проверки преподавателю или лаборанту.

ОПЫТ 1

Характеристика холостого хода Е = f(I B ) при n = const, I = 0.

1 - Т 9 .

2. Разомкните вспомогательный тумблер S 1 .

3. Поверните рукоятку R p в крайнее правое положение, соответствующее наибольшему сопротивлению резистора.

4. Пустите в ход приводной двигатель АД, для этого сначала включите автомат АП, расположенный в правой части стенда на панели питания (при этом загорится сигнальная лампа). Затем нажмите правую кнопку ”Пуск” (одновременно с пуском АД загорается вторая сигнальная лампа).

5. Повышая через равные промежутки ток возбуждения I B , запишите 10-12 показаний вольтметра V и амперметра А 2 в графу ”прямой ход” таблицы 2. Последняя точка прямого хода должна соответствовать крайнему левому положению R p . 6. Снимите нисходящую ветвь характеристики, постепенно уменьшая ток возбуждения I B до минимального значения. Запишите 5 показаний в графу ”обратный ход” таблицы 2.

Таблица 2

Прямой ход

Обратный ход

Среднее

I B , A

E, B

I B , A

E, B

E, B

Примечание:

При снятии каждой из ветвей характеристики поворот рукоятки R p должен производиться только в одном направлении с тем, чтобы ток возбуждения или только возрастал, или только убывал. В противном случае из-за перемагничивания генератора на характеристике появятся выпадающие точки.

ОПЫТ 2

Внешняя характеристика U = f(I) при n = const, R p + r B = const.

1. Резистором R p установите напряжение холостого хода U o = 100-120 В (точное значение получите у преподавателя).

2. Постепенно увеличивая нагрузку генератора тумблерами Т 1 -Т 9 , запишите 10 показаний V и А 1 в таблицу 3.

Таблица 3

I, A

U, B

ОПЫТ 3

1. Отключите нагрузочные резисторы Т 1 -Т 9 и установите резистором R p напряжение генератора U = 90-110 B (точное значение получите у преподавателя).

2. Увеличьте нагрузку генератора, включив тумблер Т 1 . Одновременно резистором R p установите такой ток возбуждения, при котором напряжение генератора вновь будет равно заданному значению. Запишите показания амперметров А 1 и А 2 в таблицу 4.

I B уменьш, A

I СР , A

3. Аналогично снимайте остальные точки регулировочной характеристики, включая тумблеры Т 2 , Т 3 и т.д.

Автоматом АП отключите стенд от питающей сети. Все сигнальные лампы должны погаснуть, а генератор остановиться. По данным таблиц 2,3,4 постройте характеристики и предъявите их преподавателю.

б) Генератор с независимым возбуждением

Подготовьте лабораторную установку для снятия характеристик генератора с независимым возбуждением. Схема установки приведена на рис. 6. Клеммы источника независимого возбуждения ”0-250 B” расположены на панели питания в правой части стенда. Для регулирования тока возбуждения предусмотрен резистор R p (можно использовать также рукоятку ЛАТР на панели блока питания).

Характеристика холостого хода ничем не отличается от ранее снятой, поэтому она не входит в программу испытаний.

ОПЫТ 4

Внешняя характеристика U = f(I) при n = const, I B = const.

1. Пустите в ход приводной двигатель АД автоматом АП и кнопкой ”Пуск”.

2. Включите источник независимого возбуждения. Для этого нажмите левую кнопку ”Пуск” на панели питания (загорится третья сигнальная лампа).

3. Резистором R p или рукояткой регулятора установите такой ток возбуждения, при котором напряжение холостого хода генератора U 0 будет равно заданному в опыте 2.

4. Постепенно повышая нагрузку генератора, снимите зависимость напряжения от тока нагрузки. Для записи результатов измерений используйте форму таблицы 3.

ОПЫТ 5

Регулировочная характеристика I B = f(I) при n = const, U = const.

1. Отключите нагрузочные резисторы тумблерами Т 1 - Т 9 .

2. Установите ток возбуждения, при котором напряжение холостого хода генератора будет равно заданному в опыте 3.

3. Постепенно повышая нагрузку генератора, регулируйте ток возбуждение генератора так, чтобы напряжение не изменялось. При этом записывайте показания амперметров А 1 и А 2 в таблицу. Форма таблицы аналогична табл. 4.

Отключите стенд автоматом АП. Постройте внешнюю и регулировочную характеристики генератора с независимым возбуждением. Используйте координатные оси, на которых построены аналогичные характеристики генератора с параллельным возбуждением.

Покажите графики преподавателю и получите разрешение на разборку схемы.

Рис. 6. Схема генератора с независимым возбуждением

Обработка результатов

  1. Объясните вид характеристики холостого хода и причину несовпадения восходящей и нисходящей ветвей.
  2. Сопоставьте внешние характеристики генераторов с параллельным и независимым возбуждением. Кратко объясните их вид.
  3. Объясните вид регулировочных характеристик.
  4. Дайте заключение об эксплуатационных свойствах генераторов и объясните причины снижения напряжения с ростом нагрузки.
  1. Наименование и цель работы.
  2. Технические сведения об оборудовании и электроизмерительных приборах.
  3. Схемы экспериментальных установок.
  4. Таблицы с результатами измерений.
  5. Графические материалы - характеристики.
  6. Выводы о соответствии результатов эксперимента теоретическим положениям.

Контрольные вопросы

  1. В чем состоит назначение генератора постоянного тока и на чем основан принцип его работы?
  2. Для каких целей предназначены обмотка возбуждения, якорь, коллектор, щетки?
  3. В чем различие между генераторами с параллельным и независимым возбуждением?
  4. Чем объясняется, что характеристика холостого хода имеет две ветви?
  5. В чем состоит процесс самовозбуждения генератора?
  6. Почему с увеличением нагрузки генератора напряжение на зажимах якоря снижается?
  7. Почему с ростом нагрузки напряжение генератора с независимым возбуждением снижается менее интенсивно, чем генератора с параллельным возбуждением?
  8. Для какого из генераторов режим короткого замыкания наиболее опасен? Почему?
  9. Каким образом можно регулировать напряжение генератора?
  10. Где применяются генераторы постоянного тока?

ЭДС якоря зависит от потока и скорости вращения.

4-4. Реакция якоря в машинах постоянного тока

В режиме холостого хода генератора постоянного тока ток возбуждения создает основной поток, который при вращении якоря наводит в обмотке якоря ЭДС. Поток при холостом ходе имеет симметричный характер, рис. 181. Если якорную цепь подключить к нагрузке, то по обмотке якоря будет протекать ток, который создаст свой поток.

Взаимодействие потока якоря с потоком основных полюсов и называется реакцией якоря. Картину распределения потока якоря можно представить на рис. 182.

При холостом ходе генератора ЭДС, наводимая в обмотке якоря, определяется по правилу правой руки. Подключив нагрузку, в якоре появится ток с тем же направлением что и ЭДС. Ток создаст поток, который, взаимодействуя с потоком основных полюсов, создаст результирующий поток. За счет потока якоря набегающий край полюса будет размагничиваться, а сбегающий край полюса намагничиваться, рис. 183. Физическая нейтраль у генератора будет сдвигаться по ходу вращения якоря. Она перпендикулярна результирующему потоку.


Рис. 181 Рис. 182 Рис. 183

Реакция якоря у двигателя противоположна генератору.

Генератор Двигатель

При одинаковом направлении вращения якоря, независимо от режима работы, направление ЭДС в якоре одинаково. В двигательном режиме ток якоря направлен встречно ЭДС, поэтому реакция якоря двигателя противоположна генератору, т.е. набегающий край полюса будет намагничиваться, а сбегающий край полюса размагничиваться.

Рассмотрим намагничивающую силу реакции якоря, магнитную индукцию якоря и результирующую индукцию на полюсном делении.

Для рассмотрения намагничивающей силы реакции якоря введем понятие о линейной нагрузке якоря – ток приходящийся на единицу длины окружности якоря.

Путем введения этой величины можно условно заменить зубчатый якорь гладким, у которого линейная нагрузка равномерно распределена по всей поверхности. У реального якоря ток находится только в пазах, что осложняет расчет.

По закону полного тока следует, что намагничивающая сила по замкнутому контуру равна полному току, который охватывается этим контуром, а полный ток на данной длине определяется линейной нагрузкой.

Поэтому намагничивающая сила реакции якоря - линейный закон.

Определим закономерность индукции якоря. - линейный закон сохраняется под полюсами, а между полюсами за счет большого сопротивления воздуха кривая индукции имеет провал. (), рис. 184. При холостом ходе индукция имеет вид близкий к трапеции.

Результирующая кривая индукции имеет искаженный характер, т. е. набегающий край полюса размагничивается, а сбегающий намагничивается. Щетки установлены на нейтрали. Реакция якоря при этом будет поперечная, рис. 185.



Рис.185 Рис. 186 Рис. 187

Если щетки установить вдоль полюсов, реакция якоря будет продольно размагничивающая, рис. 186. Если щетки генератора сдвинуть на дугу () по направлению вращения то реакцию якоря можно разложить по осям, рис. 187

, ,

где: - поперечная ось

Продольная ось.

Поперечная намагничивающая сила искажает магнитный поток, а продольная размагничивает.

Реакция якоря влияет на все характеристики генераторов постоянного тока.

4-5. Генераторы постоянного тока

Генератор постоянного тока преобразует механическую энергию в электрическую. В зависимости от способов соединения обмоток возбуждения с якорем генераторы классифицируются:

1. генератор независимого возбуждения, рис. 188.

2. генераторы с самовозбуждением:

а) генератор параллельного возбуждения, рис. 189.

б) генератор последовательного возбуждения, рис. 190.

в) генератор смешанного возбуждения, рис. 191.


Энергетическая диаграмма генератора независимого возбуждения (рис. 192).


Механическая мощность на валу

Электромагнитная мощность

Отдаваемая электрическая мощность

- потери магнитные, механические, электрические, потери в щеточном контакте.

Разделив уравнение на ток якоря , получим:

или

4-5-1. Электромагнитный момент генератора постоянного тока

Сила, воздействующая на проводник с током равна , рис. 193. Для расчета принимаем индукцию на полюсном делении среднюю величину. Ток во всех проводниках одинаков, индукция средняя, каждый проводник практически пересекает магнитную линию перпендикулярно. Исходя из этого, можно суммарную силу всех проводников сосредоточить в одном проводнике.

Где - число проводников обмотки якоря. Электромагнитный момент

заменим , , ,получим ,

где: , - поток, тогда

Электромагнитный момент зависит от потока и тока якоря. В генераторном режиме электромагнитный момент является тормозным. Уравнение равновесного состояния моментов запишется , где:

Механический момент на валу генератора

Момент холостого хода

Электромагнитный момент

4-5-2. Генератор независимого возбуждения

Схема включения генератора независимого возбуждения представлена на рис. 194.

Свойства генератора определяются его характеристиками.

1.Характеристика холостого хода: , , , рис. 195

Пунктирная - расчетная характеристика холостого хода.

Характеристика холостого хода позволяет судить о степени насыщения магнитной цепи.

2. Нагрузочная характеристика: , , , рис.47.

Треугольник - характеристический. Катет - ток возбуждения, который идет на компенсацию реакции якоря.

3.Внешняя характеристика: , , рис. 48,Рис.

Электротехника с основами электроникиУчебное пособие >> Физика

Указаниям и конспекту лекций теоретические вопросы, ... , проанализировать энергетические соотношения и... рода электрических машин и... в промышленных электрических установках нежелательное и опасное... 1. Иванов И.И., Равдоник В.С. Электротехника . - М.: Высшая школа, ...

  • Теория сигналов и систем. Конспект лекций и практических занятий

    Конспект >> Коммуникации и связь

    Напряжения в промышленных установках , транспортных средствах... , импульс тока в электротехнике и т.п.) – математическая... и электронной вычислительной машине , обыгрывающей в шахматы... 1975. - 264 с. Лекция 6. ЭНЕРГЕТИЧЕСКИЕ СПЕКТРЫ СИГНАЛОВ Содержание 1. Мощность...

  • Синхронные машины . Конспект лекций

    Конспект >>

    Якоря. В нормальных машинах постоянного тока, с установкой щеток на геометрической... рассмотрения впервые был предложен французским электротехником А. Блонделем в 1895 г. ... совместной работе синхронных машин в энергети­ческой системе необходимо учитывать их...

  • Контроль качества и определение свойств материалов

    Лекция >> Промышленность, производство

    Конспект лекций для студентов Оглавление Введение... задается с некоторой постоянной скоростью. Испытательные машины , в которых корректируется режим деформирования... или контактные. В хороших современных машинах датчик деформации индуктивный и крепится на...