Изомерия органических веществ. Межклассовая изомерия органических соединений

Предмет и роль органической химии. Теория химического строения органических соединений А.М. Бутлерова и ее значение.

Органическая химия , наука, изучающая соединения углерода с другими элементами (органические соединения), а также законы их превращений.

Многообразие и громадное число органических соединений определяет значение органической химии как крупнейшего раздела современной химии. Окружающий нас мир построен главным образом из органических соединений; пища, топливо одежда, лекарства, краски, моющие средства, взрывчатые вещества, материалы, без которых невозможно создание транспорта, книгопечатания, проникновение в космос и прочее, - все это состоит из органических соединений. Важнейшую роль органические соединения играют в процессах жизнедеятельности. Органическая химия изучает не только соединения, получаемые из растительных и животных организмов (так называемые природные вещества), но в основном соединения, созданные искусственно с помощью лабораторного или промышленного органического синтеза.

Основные положения теории химического строения А.М. Бутлерова

1.Атомы в молекулах соединены друг с другом в определенной последовательности согласно их валентностям. Последовательность межатомных связей в молекуле называется ее химическим строением и отражается одной структурной формулой (формулой строения).

2. Химическое строение можно устанавливать химическими методами. (В настоящее время используются также современные физические методы).

3.Свойства веществ зависят от их химического строения.

4.По свойствам данного вещества можно определить строение его молекулы, а по строению молекулы - предвидеть свойства.

5.Атомы и группы атомов в молекуле оказывают взаимное влияние друг на друга.

Теория Бутлерова явилась научным фундаментом органической химии и способствовала быстрому ее развитию. Опираясь на положения теории, А.М. Бутлеров дал объяснение явлению изомерии, предсказал существование различных изомеров и впервые получил некоторые из них.

Явление изомерии органических соединений, ее типы.

В основе изомерии, как показал А.М. Бутлеров, лежит различие в строении молекул, состоящих из одинакового набора атомов. Таким образом, изомерия - это явление существования соединений, имеющих одинаковый качественный и количественный состав, но различное строение и, следовательно, разные свойства.

Например, при содержании в молекуле 4-х атомов углерода и 10-ти атомов водорода возможно существование 2-х изомерных соединений:



В зависимости от характера отличий в строении изомеров различают структурную и пространственную изомерию.

Структурные изомеры - соединения одинакового качественного и количественного состава, отличающиеся порядком связывания атомов, т.е. химическим строением.

Например, составу C 5 H 12 соответствует 3 структурных изомера:

Пространственные изомеры (стереоизомеры) при одинаковом составе и одинаковом химическом строении различаются пространственным расположением атомов в молекуле.

Пространственными изомерами являются оптические и цис-транс изомеры. Молекулы таких изомеров несовместимы в пространстве.

Электронные представления в органической химии. Строение атома углерода. Гибридизация орбиталей (валентные состояния атома углерода). Ковалентная связь и ее виды (простая, или δ- и кратные).

Применение электронной теории строения атома и химической связи в органической химии явилось одним из важнейших этапов развития теории строения органических соединений. Понятие о химическом строении как последовательности связей между атомами (А.М. Бутлеров) электронная теория дополнила представлениями об электронном и пространственном строении и их влиянии на свойства органических соединений. Именно эти представления дают возможность понять способы передачи взаимного влияния атомов в молекулах (электронные и пространственные эффекты) и поведение молекул в химических реакциях.



Согласно современным представлениям свойства органических соединений определяются:

· природой и электронным строением атомов;

· типом атомных орбиталей и характером их взаимодействия;

· типом химических связей;

· химическим, электронным и пространственным строением молекул.

Атом углерода состоит из ядра, имеющего положительный заряд +6 (так как содержит шесть протонов), и электронной оболочки, на которой находятся шесть электронов, расположенных на двух энергетических уровнях (слоях). Электронная конфигурация в основном состоянии 1s 2 2s 2 2p 2 .

В нормальном (невозбужденном) состоянии атом углерода имеет два неспаренных 2р 2 -электрона. В возбужденном состоянии (при поглощении энергии) один из 2s 2 -электронов может переходить на свободную р -орбиталь. Тогда в атоме углерода появляется четыре неспаренных электрона:

Гибридизацией орбиталей называется процесс выравнивания их по форме и энергии. Число гибридных орбиталей равно числу исходных орбиталей. По сравнению с ними гибридные орбитали более вытянуты в пространстве, что обеспечивает их более полное перекрывание с орбиталями соседних атомов.

sр-Гибридизация – это смешивание (выравнивание по форме и энергии) одной s- и одной р -орбиталей с образованием двух гибридных -орбиталей. -Орбитали расположены на одной линии (под углом 180°) и направлены в противоположные стороны от ядра атома углерода. Две р -орбитали остаются негибридизованными. Они размещены взаимно перпендикулярно направлениям -связей.

Существуют три вида ковалентной химической связи, отличающихся механизмом образования:
1. Простая ковалентная связь. Для ее образования каждый из атомов предоставляет по одному неспаренному электрону. При образовании простой ковалентной связи формальные заряды атомов остаются неизменными.

Если атомы, образующие простую ковалентную связь, одинаковы , то истинные заряды атомов в молекуле также одинаковы, поскольку атомы, образующие связь, в равной степени владеют обобществленной электронной парой, такая связь называется неполярной ковалентной связью.

Если атомы различны , то степень владения обобществленной парой электронов определяется различием в электроотрицательностях атомов. Атом с большей электроотрицательностью сильнее притягивает к себе пару электронов связи, и его истинный заряд становится отрицательным. Атом с меньшей электроотрицательностью приобретает такой же по величине положительный заряд. Такая ковалентная связь называется полярной .

2. Донорно-акцепторная связь. Для образования этого вида ковалентной связи оба электрона предоставляют один из атомов - донор. Второй из атомов, участвующий в образовании связи, называется акцептором. В образовавшейся молекуле формальный заряд донора увеличивается на единицу, а формальный заряд акцептора уменьшается на единицу.

3. Семиполярная связь . Этот вид ковалентной связи образуется между атомом, обладающим неподеленной парой электронов (азот, фосфор, сера, галогены и т. п.) и атомом с двумя неспаренными электронами (кислород, сера). Образование семиполярной связи протекает в два этапа:

· Окисление (перенос одного электрона);

· Обобществление неспаренных электронов.

σ-связь (сигма-связь) - ковалентная связь, образующаяся перекрыванием электронных облаков «по осевой линии». Характеризуется осевой симметрией. Связь, образующаяся при перекрывании гибридных орбиталей вдоль линии, соединяющей ядра атома.

Классификация органических соединений. Функциональные группы и важнейшие классы органических соединений. Гетерофункциональные соединения. Качественный функциональный анализ (химическая идентификация классов органических соединений).

Ациклические соединения (жирные или алифатические) – соединения, молекулы которых содержат открытую (незамкнутую в кольцо) неразветвленную или разветвленную углеродную цепь с простыми или кратными связями. Ациклические соединения подразделяются на две основные группы:

насыщенные (предельные) углеводороды (алканы), у которых все атомы углерода связаны между собой только простыми связями;

ненасыщенные (непредельные) углеводороды (алкены, алкины и алкадиены), у которых между атомами углерода кроме одинарных простых связей, имеются также и двойные, и тройные связи.

Циклические соединения в свою очередь делятся на две большие группы:

  1. карбоциклические соединения – соединения, циклы которых состоят только из атомов углерода; Карбоциклические соединения подразделяются на алициклические– насыщенные (циклопарафины) и ароматические ;
  2. гетероциклические соединения – соединения, циклы которых состоят не только из атомов углерода, но атомов других элементов: азота, кислорода, серы и др.

К «Другим классам органических соединений» относятся следующие: спирты, альдегиды, карбоновые кислоты, сложные эфиры, жиры, углеводы, амины, аминокислоты, белки, нуклеиновые кислоты.

Пероксиды , Сульфиды Простые эфиры Амины Спирты Кетоны

Большинство органических веществ, участвующих в процессах метаболизма, относятся к гетерофункциональным соединениям , т.е. имеющим в структуре несколько различных функциональных групп. Наиболее распространенными гетерофункциональными соединениями являются аминоспирты, аминокислоты, оксикислоты и оксокислоты. Химические свойства гетерофункциональных соединений нельзя рассматривать как сумму свойств, обусловленных наличием каждой функциональной группы. Так как функциональные группы влияют друг на друга, то у гетерофункциональных соединений появляются и специфические химические свойства.

Качественный анализ имеет своей целью обнаружение определенных веществ или их компонентов в анализируемом объекте. Обнаружение проводится путем идентификации веществ, то есть установления тождественности (одинаковости) АС анализируемого объекта и известных АС определяемых веществ в условиях применяемого метода анализа. Для этого данным методом предварительно исследуют эталонные вещества, в которых наличие определяемых веществ заведомо известно.

Теория А.М. Бутлерова

1. Атомы в молекулах соединены между собой в определенной последовательности химическими связями в соответствии с их валентностью. Порядок связи атомов называется их химическим строением. Углерод во всех органических соединениях четырехвалентен.

2. Свойства веществ определяются не только качественным и количественным составом молекул, но и их строением.

3. Атомы или группы атомов взаимно влияют друг на друга, от чего зависит реакционная способность молекулы.

4. Строение молекул может быть установлено на основании изучения их химических свойств.

Органические соединения обладают рядом характерных особенностей, которые отличают их от неорганических. Почти все они (за редким исключением) горючи; большинство органических соединений не диссоциирует на ионы, что обусловлено природой ковалентной связи в органических веществах. Ионный тип связи реализуется только в солях органических кислот, например, CH3COONa.

Гомологический ряд – это бесконечный ряд органических соединений, имеющих сходное строение и, следовательно, сходные химические свойства и отличающихся друг от друга на любое число СН2– групп (гомологическая разность).

Еще до создания теории строения были известны вещества одинакового элементного состава, но c разными свойствами. Такие вещества были названы изомерами, а само это явление – изомерией.

В основе изомерии, как показал А.М. Бутлеров, лежит различие в строении молекул, состоящих из одинакового набора атомов.

Изомерия – это явление существования соединений, имеющих одинаковый качественный и количественный состав, но различное строение и, следовательно, разные свойства.

Различают 2 вида изомерии: структурную изомерию и пространственную изомерию.

Структурная изомерия

Структурные изомеры – соединения одинакового качественного и количественного состава, отличающиеся порядком связывания атомов, т.е химическим строением.

Пространственная изомерия

Пространственные изомеры (стереоизомеры) при одинаковом составе и одинаковом химическом строении различаются пространственным расположением атомов в молекуле.
Пространственными изомерами являются оптические и цис-транс изомеры (геометрические).

Цис-транс-изомерия

заключается в возможности расположения заместителей по одну или по разные стороны плоскости двойной связи или неароматического цикла.В цис-изомерах заместители находятся по одну сторону от плоскости кольца или двойной связи, в транс-изомерах – по разные.

В молекуле бутена-2 СН3–СН=СН–СН3 группы СН3 могут находиться либо по одну сторону от двойной связи — в цис-изомере, либо по разные стороны — в транс-изомере.

Оптическая изомерия

Появляется тогда, когда углерод имеет четыре разных заместителя.
Если поменять местами любые два из них, получается другой пространственный изомер того же состава. Физико-химические свойства таких изомеров существенно различаются. Соединения такого типа отличаются способностью вращать плоскость пропускаемого через раствор таких соединений поляризованного света на определенную величину. При этом один изомер вращает плоскость поляризованного света в одном направлении, а его изомер – в противоположном. Вследствие таких оптических эффектов этот вид изомерии называют оптической изомерией.

В органической химии широко распространена изомерия , суть которой состоит в том, что существует несколько разных веществ, обладающих одинаковой молекулярной формулой, но имеющих различное строение и, вследствие этого, различные химические и физические свойства. В этом случае знание только молекулярной формулы не дает полного представления о свойствах вещества. Такое представление нам может дать знание структурной (графической) формулы вещества.

Различают структурную, позиционную, геометрическую (цис-, транс-) и оптическую виды изомерии органических соединений.

Структурная изомерия органических соединений

А. Кратных связей

Б. Заместителей

В. Функциональных групп

Геометрическая изомерия органических соединений

В данном случае порядок соединения атомов в изомерных молекулах одинаков, а их пространственное расположение различается. Такие изомеры называют пространственными или стереоизомерами. В свою очередь, стереоизомеры, в которых стереогенной группой является кратная связь или малые циклы называются геометрическими.

Существование геометрических изомеров возможно при наличии функциональных групп при кратной связи. А различие изомеров заключается в пространственном расположении функциональных групп относительно плоскости двойной связи.

Названия таких изомеров строятся с использованием цис -, транс- обозначений:

В цис-изомере два идентичных заместителя при различных атомах углерода, связанных двойной связью, находятся по одну сторону от двойной связи.

В транс-изомере одинаковые заместители лежат по разные стороны от двойной связи.

В случае, когда при кратной связи все заместители разные используют Е-, Z- обозначения Е » от entgegen — напротив, «Z » от zusammen — вместе). Для определения типа конфигурации (Е — или, Z -) необходимо установление старшинства заместителей, т.е. сравнение их атомных номеров.

Z — конфигурацию имеет изомер, у которого два старших заместителя расположены с одной стороны двойной связи, а Е -кофигурацию имеет изомер, у которого два старших заместителя расположены по разные стороны от двойной связи.

Например, определим тип конфигурации изомеров 1-бром-1-хлор-2-нитроэтилена, представленных на рисунке. Изомеры Этилена имеют следующие заместители H (атомный номер — 1), Br (атомный номер — 35), N (атомный номер — 7), Cl (атомный номер — 17).

а) у первого атома углерода старшим является заместитель Br (35), у второго атома углерода — N (7). Эти заместители находятся по разные стороны от кратной связи. Следовательно, это Е – изомер.

б) у первого атома углерода старшим является заместитель Cl (17), у второго атома углерода — Br (35). Эти заместители находятся по одну сторону от кратной связи. Следовательно, это Z – изомер.

В случае, когда заместители, напрямую связанные с ненасыщенными атомами углерода («первого слоя»), одинаковы, то сравнивают заместители «второго слоя», «третьего слоя» и т. д.

В представленном примере все заместители «первого слоя» одинаковы – это С. Следовательно, необходимо рассмотрение «второго слоя». В этом слое у первого атома углерода, соединенного двойной связью старшим будет заместитель – Cl, у второго атома углерода – С. Два старших заместителя расположены по одну сторону двойной связи, значит изомер имеет 2 Z конфигурацию.

Оптическая изомерия органических соединений

Еще в начале 19 века было обнаружено, что некоторые вещества, при пропускании сквозь них поляризованного света, отклоняют плоскость поляризации на некий угол. Кроме этого, существует два соединения (изомера), отклоняющие плоскость поляризации на углы равные по величине, но отличающиеся по знаку (левовращающий и правовращающий). Такие вещества назвали оптическими изомерами (антиподами или энантиомерами).

Смесь, в которой содержится равное количество лево- и правовращающих изомеров оптически неактивно и называется рацемической смесью .

Оптическая активность характерна для веществ, в состав которых входит один или более асимметрических атомов углерода (т.е. углерод, связанный с четырьмя различными заместителями), например:

Два оптических изомера отличатся друг от друга как предмет и его зеркальное отражение. При совмещении они не совпадают как левая и правая руки при наложении друг на друга. Такие молекулы называют хиральными (греч. «хейрос» — рука). Если же молекула при наложении совпадает со своим зеркальным отражением, то она ахиральна .

В органических молекулах помимо углерода, связанного с четырьмя различными заместителями, хиральностью могут обладать соединения, содержащие такие атомы как кремний, азот и фосфор, а также имеющими стереогенную ось или плоскость.

На плоскости оптические изомеры изображают с помощью проекционных формул Фишера

Правила построения формул Фишера:

  1. Вертикальная пунктирная линия, показывает проекции связей, устремленные от наблюдателя
  2. Горизонтальная линия показывает проекции связей, устремленные к наблюдателю
  3. Центр пересечения вертикальной и горизонтальной линий отвечает хиральному центру, в роли которого чаще всего выступает асимметрический атом углерода. При этом символ самого асимметрического атома углерода С не изображается.
  4. Если же асимметрическим центром является не углерод, а другой атом, то в центре пересечения линий необходимо изобразить его символ.
  5. На концах вертикальных и горизонтальных линий изображают заместители, строго соблюдая их пространственное расположение.
Категории ,

Изомеры, изомерия

Изомеры – это вещества, имеющие одинаковый качественный и количественный состав, но различное строение и, следовательно, разные свойства

Явление существования изомеров называется изомерией

Например, вещество состава С 4 Н 10 имеет два изомерных соединения.

Физические свойства бутана и изобутана отличаются: изобутан имеет более низкие температуры плавления и кипения, чем н.бутан.


Шаростержневая модель молекулы бутана
Шаростержневая модель молекулы изобутана

Химические свойства данных изомеров различаются незначительно, т.к. они имеют одинаковые качественный состав и характер связи между атомами в молекуле.

По- другому определение изомеров можно дать так:

Изомеры – вещества, имеющие одинаковую молекулярную, но разную структурную формулу.

Виды изомерии

В зависимости от характера отличий в строении изомеров различают структурную и пространственную изомерию.

Структурные изомеры - соединения одинакового качественного и количественного состава, отличающиеся порядком связывания атомов, т.е химическим строением .

Структурная изомерия делится на:

1.Изомерию углеродного скелета

2.Изомерию положения

(кратной связи, функциональной группы, заместителя)

3.Межклассовую изомерию

CH 3 -CH 2 -NO 2

нитроэтан

HOOC-CH 2 -NH 2 аминоуксусная кислота (глицин)

Изомерия положения

кратной связи

СН 2 = СН-СН= СН 2

СН 3 -СН= С= СН 2

функциональной группы

СН 3 -СНОН -СН 3

СН 2 ОН -СН 2 -СН 3

Заместителя

СН 3 -СНCI -СН 3

СН 2 CI -СН 2 -СН 3

Структурная изомерия

Изомерия положения кратной (двойной) связи:

Бутен-1 и бутен -2

Изомерия углеродного скелета:

Циклобутан и метилциклопропан

Межклассовая изомерия:

Бутен и циклобутан

Пространственные изомеры (стереоизомеры) при одинаковом составе и одинаковом химическом строении различаются пространственным расположением атомов в молекуле

Пространственная изомерия делится на:

Характерна для веществ, содержащих двойные связи или циклические.

Оптические изомеры еще называют зеркальными или хиральными (как левая и правая рука)

Изомерия существование разных веществ с одинаковой молекулярной формулой. Данное явление обусловлено тем, что одни и те же атомы могут по-разному соединяться друг с другом. Все изомеры делят на два больших класса – структурные изомеры и пространственные изомеры (стереоизомеры).

Структурными называют изомеры, отвечающие различным структурным формулам органических соединений (с разным поряд­ком соединения атомов).

Стереоизомерами называют соединения, имеющие одинаковый состав и одинаковый порядок соединения атомов, но отличающиеся расположением атомов в пространстве.

Структурные изомеры. В соответствии с приведенной выше классификацией органических соединений по типам среди струк­турных изомеров выделяют три группы:

1) соединения, содержащие различные функциональные группы и относящиеся к различным классам органических соединений, на­пример:

2) соединения, отличающиеся углеродными скелетами:

3) соединения, отличающиеся положением заместителя или кратной связи в молекуле:

Пространственные изомеры (стереоизомеры). Стереоизомеры можно разделить на два типа: геометрические изомеры и оптические изомеры.

Геометрическая изомерия характерна для соединений, содержа­щих двойную связь или цикл. В таких молекулах часто возможно провести условную плоскость таким образом, что заместители у различных атомов углерода могут оказаться по одну сторону (цис-) или по разные стороны (транс-) от этой плоскости. Если изменение ориентации этих заместителей относительно плоскости возможно только за счет разрыва одной из химических связей, то говорят о на­личии геометрических изомеров.

Геометрические изомеры могут существенно отличаться своими физическими и химическими свойствами.

Оптическими изомерами называют молекулы, зеркальные изо­бражения которых не совместимы друг с другом. Их можно разде­лить на два типа: энантиомеры и диастереомеры.

Стереоизомеры, имеющие зеркальную конфигурацию асимметрических (хиральных) центров, называютэнантиомерами илиоптическими антиподами.

Энантиомерия характерна для молекул, имеющих один асим­метрический (хиральный) атом углерода, т.е. атом, связанный с четырьмя раз­личными атомами или группами атомов. Молекулы энантиомеров относятся друг к другу как предмет и несовместимое с ним зеркаль­ное отображение. Энантиомеры имеют одинаковые физические и химические свойства, но отличаются знаком вращения поляризо­ванного света.

В виде энантиомеров существует, например, молочная кислота СН 3 -СН(ОН)-СООН:

Эквимолярная смесь (+) и (–) энантиомеров оптичес­ки неактивна и называетсярацемической смесью илирацематом.

Диастереомеры – пространственные изомеры, молекулы кото­рых не являются зеркальными изображениями друг друга. Диастереомеры отличаются друг от друга физическими и химическими свойствами.