Активный и пассивный транспорт веществ в растениях. Активный транспорт ионов и молекул через мембрану

Пассивный транспорт включает простую и облегченную диффузию - процессы, которые не требуют затраты энергии. Диффузия – транспорт молекул и ионов через мембрану из области с высокой в область с низкой их концентрацией, те. вещества поступают по градиенту концентрации. Диффузия воды через полупроницаемые мембраны называется осмосом. Вода способна проходить также через мембранные поры, образованные белками, и переносить молекулы и ионы растворенных в ней веществ. Механизмом простой диффузии осуществляется перенос мелких молекул (например, О2, Н2О, СО2); этот процесс малоспецифичен и протекает со скоростью, пропорциональной градиенту концентрации транспортируемых молекул по обеим сторонам мембраны.

Облегченная диффузия осуществляется через каналы и (или) белки-переносчики, которые обладают специфичностью в отношении транспортируемых молекул. В качестве ионных каналов выступают трансмембранные белки, образующие мелкие водные поры, через которые по электрохимическому градиенту транспортируются мелкие водорастворимые молекулы и ионы. Белки-переносчики также являются трансмембранными белками, которые претерпевают обратимые изменения конформации, обеспечивающие транспорт специфических молекул через плазмолемму. Они функционируют в механизмах как пассивного, так и активного транспорта.

Активный транспорт является энергоемким процессом, благодаря которому перенос молекул осуществляется с помощью белков-пере­носчиков против электрохимического градиента. Примером механизма, обеспечивающего противоположно направленный активный транспорт ионов, служит натриево-калиевый насос (представленный белком-пере­носчиком Nа + -К + -АТФазой), благодаря которому ионы Na + выводятся из цитоплазмы, а ионы К + одновременно переносятся в нее. Концентрация К + внутри клетки в 10-20 раз выше, чем снаружи, а концентрация Na наоборот. Такая разница в концентрациях ионов обеспечивается работой (Na*-K*> насоса. Для поддержания данной концентрации происходит перенос трех ионов Na из клетки на каждые два иона К* в клетку. В этом процессе принимает участие белок в мембране, выполняющий функцию фермента, расщепляющего АТФ, с высвобождением энергии, необходимой для работы насоса.
Участие специфических мембранных белков в пассивном и активном транспорте свидетельствует о высокой специфичности этого процесса. Этот механизм обеспечивает поддержание постоянства объема клетки (путем регуляции осмотического давления), а также мембранного потенциала. Активный транспорт глюкозы в клетку осуществляется белком-переносчиком и сочетается с однонаправленным переносом иона Nа + .

Облегченный транспорт ионов опосредуется особыми трансмем­бранными белками - ионными каналами, обеспечивающими избиратель­ный перенос определенных ионов. Эти каналы состоят из собственно транспортной системы и воротного механизма, который открывает канал на некоторое время в ответ на изменение мембранного потенциала, (б) механическое воздействие (например, в волосковых клетках внутреннего уха), связывание лиганда (сигнальной молекулы или иона).

Мембранный транспорт веществ различается также по направлению их перемещения и количеству переносимых данным переносчиком веществ :

  • Унипорт - транспорт одного вещества в одном направлении в зависимости от градиента
  • Симпорт - транспорт двух веществ в одном направлении через один переносчик.
  • Антипорт - перемещение двух веществ в разных направлениях через один переносчик.

Унипорт осуществляет, например, потенциал-зависимый натриевый канал, через который в клетку во время генерации потенциала действия перемещаются ионы натрия.

Симпорт осуществляет переносчик глюкозы, расположенный на внешней (обращенной в просвет кишечника) стороне клеток кишечного эпителия. Этот белок захватывает одновременно молекулу глюкозы и ион натрия и, меняя конформацию, переносит оба вещества внутрь клетки. При этом используется энергия электрохимического градиента, который, в свою очередью создается за счет гидролиза АТФ натрий-калиевой АТФ-азой.

Антипорт осуществляет, например, натрий–калиевая АТФаза (или натрий–зависимая АТФаза). Она переносит в клетку ионы калия. а из клетки - ионы натрия. Первоначально этот переносчик присоединяет с внутренней стороны мембраны три иона Na + . Эти ионы изменяют конформацию активного центра АТФазы. После такой активации АТФаза способна гидролизовать одну молекулу АТФ, причем фосфат-ион фиксируется на поверхности переносчика с внутренней стороны мембраны.

Выделившаяся энергия расходуется на изменение конформации АТФазы, после чего три иона Na + и ион (фосфат) оказываются на внешней стороне мембраны. Здесь ионы Na + отщепляются, а замещается на два иона K + . Затем конформация переносчика изменяется на первоначальную, и ионы K + оказываются на внутренней стороне мембраны. Здесь ионы K + отщепляются, и переносчик вновь готов к работ

Пассивный транспорт - транспорт веществ по градиенту концентрации, не требующий затрат энергии. Пассивно происходит транспорт гидрофобных веществ сквозь липидный бислой. Пассивно пропускают через себя вещества все белки-каналы и некоторые переносчики. Пассивный транспорт с участием мембранных белков называют облегченной диффузией.

Другие белки-переносчики (их иногда называют белки-насосы) переносят через мембрану вещества с затратами энергии, которая обычно поставляется при гидролизе АТФ. Этот вид транспорта осуществляется против градиента концентрации переносимого вещества и называется активным транспортом.

Симпорт, антипорт и унипорт

Мембранный транспорт веществ различается также по направлению их перемещения и количеству переносимых данным переносчиком веществ:

1) Унипорт - транспорт одного вещества в одном направлении в зависимости от градиента

2) Симпорт - транспорт двух веществ в одном направлении через один переносчик.

3) Антипорт - перемещение двух веществ в разных направлениях через один переносчик.

Унипорт осуществляет, например, потенциал-зависимый натриевый канал, через который в клетку во время генерации потенциала действия перемещаются ионы натрия.

Симпорт осуществляет переносчик глюкозы, расположенный на внешней (обращенной в просвет кишечника) стороне клеток кишечного эпителия. Этот белок захватывает одновременно молекулу глюкозы и ион натрия и, меняя конформацию, переносит оба вещества внутрь клетки. При этом используется энергия электрохимического градиента, который, в свою очередью создается за счет гидролиза АТФ натрий-калиевой АТФ-азой.

Антипорт осуществляет, например, натрий–калиевая АТФаза (или натрий–зависимая АТФаза). Она переносит в клетку ионы калия. а из клетки - ионы натрия.

Работа натрий-калиевой атФазы как пример антипорта и активного транспорта

Первоначально этот переносчик присоединяет с внутренней стороны мембраны три иона Na + . Эти ионы изменяют конформацию активного центра АТФазы. После такой активации АТФаза способна гидролизовать одну молекулу АТФ, причем фосфат-ион фиксируется на поверхности переносчика с внутренней стороны мембраны.

Выделившаяся энергия расходуется на изменение конформации АТФазы, после чего три иона Na + и ион (фосфат) оказываются на внешней стороне мембраны. Здесь ионы Na + отщепляются, а замещается на два иона K + . Затем конформация переносчика изменяется на первоначальную, и ионы K + оказываются на внутренней стороне мембраны. Здесь ионы K + отщепляются, и переносчик вновь готов к работе.

Более кратко действия АТФазы можно описать так:

    1) Она изнутри клетки "забирает" три иона Na + ,затем расщепляет молекулу АТФ и присоединяет к себе фосфат

    2) "Выбрасывает" ионы Na + и присоединяет два иона K + из внешней среды.

    3) Отсоединяет фосфат, два иона K + выбрасывает внутрь клетки

В итоге во внеклеточной среде создается высокая концентрация ионов Na + , а внутри клетки - высокая концентрация K + . Работа Na + , K + - АТФаза создает не только разность концентраций, но и разность зарядов (она работает как электрогенный насос). На внешней стороне мембраны создается положительный заряд, на внутренней - отрицательный.

Градиент концентрации (от лат. gradi, gradu, gradus - ход, движение, течение, приближение; con - с, вместе, совместно + centrum - центр) или концентрационный градиент - это векторная физическая величина , характеризующая величину и направление наибольшего изменения концентрации какого-либо вещества в среде. Например, если рассмотреть две области с различной концентрацией какого-либо вещества, разделенные полупроницаемой мембраной, то градиент концентрации будет направлен из области меньшей концентрации вещества в область с большей его концентрацией.

Активный транспорт - перенос вещества через клеточную или внутриклеточную мембрану (трансмембранный А.т.) или через слой клеток (трансцеллюлярный А.т.), протекающий против градиента концентрации из области низкой концентрации в область высокой, т. е. с затратой свободной энергии организма. В большинстве случаев, но не всегда, источником энергии служит энергия макроэргических связей АТФ .

Различные транспортные АТФазы, локализованные в клеточных мембранах и участвующие в механизмах переноса веществ, являются основным элементом молекулярных устройств - насосов, обеспечивающих избирательное поглощение и откачивание определенных веществ (например, электролитов) клеткой. Активный специфический транспорт неэлектролитов (молекулярный транспорт) реализуется с помощью нескольких типов молекулярных машин - насосов и переносчиков. Транспорт неэлектролитов (моносахаридов, аминокислот и других мономеров) может сопрягаться с симпортом - транспортом другого вещества, движение которого против градиента концентрации является источником энергии для первого процесса. Симпорт может обеспечиваться ионными градиентами (например, натрия) без непосредственного участия АТФ.

Пассивный транспорт - перенос веществ по градиенту концентрации из области высокой концентрации в область низкой, без затрат энергии (например, диффузия , осмос ). Диффузия - пассивное перемещение вещества из участка большей концентрации к участку меньшей концентрации. Осмос - пассивное перемещение некоторых веществ через полупроницаемую мембрану (обычно мелкие молекулы проходят, крупные не проходят).

Существует три типа проникновения веществ в клетку через мембраны: простая диффузия, облегчённая диффузия, активный транспорт .

Простая диффузия

При простой диффузии частицы вещества перемещаются сквозь билипидный слой. Направление простой диффузии определяется только разностью концентраций вещества по обеим сторонам мембраны. Путём простой диффузии в клетку проникают гидрофобные вещества (O2,N2,бензол) и полярные маленькие молекулы (CO 2 , H 2 O, мочевина ). Не проникают полярные относительно крупные молекулы (аминокислоты, моносахариды), заряженные частицы (ионы) и макромолекулы (ДНК, белки).

Облегченная диффузия

Большинство веществ переносится через мембрану с помощью погружённых в неё транспортных белков (белков-переносчиков). Все транспортные белки образуют непрерывный белковый проход через мембрану. С помощью белков-переносчиков осуществляется как пассивный, так и активный транспорт веществ. Полярные вещества (аминокислоты, моносахариды), заряженные частицы (ионы) проходят через мембраны с помощью облегченной диффузии, при участии белков-каналов или белков-переносчиков. Участие белков-переносчиков обеспечивает более высокую скорость облегченной диффузии по сравнению с простой пассивной диффузией. Скорость облегченной диффузии зависит от ряда причин: от трансмембранного концентрационного градиента переносимого вещества, от количества переносчика, который связывается с переносимым веществом, от скорости связывания вещества переносчиком на одной поверхности мембраны (например, на наружной), от скорости конформационных изменений в молекуле переносчика, в результате которых вещество переносится через мембрану и высвобождается на другой стороне мембраны. Облегченная диффузия не требует специальных энергетических затрат за счет гидролиза АТФ. Эта особенность отличает облегченную диффузию от активного трансмембранного транспорта.

Пассивный транспорт - транспорт веществ по градиенту концентрации, не требующий затрат энергии. Пассивно происходит транспорт гидрофобных веществ сквозь липидный бислой. Пассивно пропускают через себя вещества все белки-каналы и некоторые переносчики. Пассивный транспорт с участием мембранных белков называют облегченной диффузией.

Другие белки-переносчики (их иногда называют белки-насосы) переносят через мембрану вещества с затратами энергии, которая обычно поставляется при гидролизе АТФ. Этот вид транспорта осуществляется против градиента концентрации переносимого вещества и называется активным транспортом.

Один из механизмов, транслокация групп, осуществляется при химической модификации переносимого вещества. Лучше всего изучена фосфотрансферазная система Сахаров. Механизм ее действия заключается в фосфорилировании Сахаров на наружной поверхности трансмембранного белка и переносе внутрь фосфорилированного соединения, например, глюкозо-6-фосфата. Фосфотрансферазная система Сахаров представляет собой сложный мультиферментный комплекс, в котором важно отметить два основных компонента: один, ответственный за фосфорилирование данного сахара, а другой (НРг), ответственный за перенос к первому компоненту фосфатной группы, поступающей в конечном итоге от фос-фоенолпирувата. Фосфотрансферазная система используется также при переносе пуринов, некоторых жирных кислот.

Метаболи́зм (от греч. μεταβολή - «превращение, изменение»), или обмен веществ - набор химических реакций, которые возникают в живом организме для поддержания жизни. Эти процессы позволяют организмам расти и размножаться, сохранять свои структуры и отвечать на воздействия окружающей среды. Метаболизм обычно делят на две стадии: в ходе катаболизма сложные органические вещества деградируют до более простых; в процессах анаболизма с затратами энергии синтезируются такие вещества, как белки, сахара, липиды и нуклеиновые кислоты. Питательные вещества, поглощаемые клеткой, в результате сложных биохимических реакций превращаются в специфические клеточные компоненты. Совокупность биохимических процессов поглощения, усвоения питательных веществ и создания за их счет структурных элементов клетки называется конструктивным обменом или анаболизмом. Конструктивные процессы идут с поглощением энергии. Энергию, необходимую для процессов биосинтеза других клеточных функций, таких, как движение, осморегуляция и т. д., клетка получает за счет потока окислительных реакций, совокупность которых представляет собой энергетический обмен, или катаболизм (рис. 1).



Биосинтетич составляющую конструктивного метаб-ма делят на генеральный и специализированный мет-мы. Генер-ый – биосинтез мономеров из стандартных предшеств-ок в стандартных реакциях, Специали-ый – биосинтез из станд-ых предш-ов низкомолек-ых нестандартн соед-ий в нестандартных реакциях, т.е. специализ.метаболиты не явл особо необх-ми для роста и размнож.

Фотосинтез – комплексная ассимиляция световой энергии неорг углерода с исп-ем неорг донора электронов;

Фототрофия – подразумевается только энергитич метаболизм, сязанный с ассимиляцией световой энергии фотосинтетич аппарата, способен преобразовывать кванты электромагн поля в электрохим энергоноситель pmf.

Квазефототрофия – характерно для экстремальных … и для некот бакт и для хемоорганогеторотрофов, Это адаптивный механизм получения энергии гемоорганогетеротр орг-ми архей и доменобактерий в усл энергитич стресса с помощью временного фотосинтетич аппарата. Специфика связана с недостатком кислорода (энергию получ в ходе аэр дых-ия). В усл энергитич стресса – они создают 3хкомпонентный фотосинт аппарат и получают энергию в виде pmf.

Хемотрофия – источником энергии служ разнообр орг и неорг соед. Хемотрофы исп энергию, кот освоб-ся в ходе протекания ОВР орг и неорг соед-ий. В ОВР 1 субстрат восст-ся за счет ок-ия 2го, ок-ие сопров-ся выдел-ем энергии в форме pmf.

ОБЩАЯ ХАРАКТЕРИСТИКА ЭНЕРГЕТИЧЕСКИХ ПРОЦЕССОВ

В самом общем виде процессы, способные служить источником энергии для прокариот, можно представить следующим образом:

А ® В + е – .

Например,

Fe 2+ ® Fe 3+ + е – ; (1)

CH 2 -CH 2 - ® -CH 2 =CH 2 - + 2e – ; (2)

СН 4 + 1/2 O 2 ® СН 3 ОН. (3)

В первой реакции окисление иона двухвалентного железа - это потеря электрона. Во втором примере окисление углеродного субстрата можно в равной мере рассматривать как отрыв от него водорода (дегидрирование) или независимое удаление двух протонов (Н +) и электронов (e – ). В биохимических процессах, как правило, перенос водорода осуществляется путем раздельного транспорта протонов и электронов: протоны выделяется в среду и при необходимости поглощаются из нее, электроны обязательно должны быть переданы на соответствующие молекулы Поэтому все окислительно-восстановительные превращения определяются по существу "перемещениями" электронов. Разнообразные соединения, способные окисляться, т. е. являющиеся источниками отрываемых электронов, называются донорами электронов. Поскольку электроны не могут существовать самостоятельно, они обязательно должны быть перенесены на молекулы, способные их воспринимать и, таким образом, восстанавливаться. Такие молекулы называются акцепторами электронов. Таким образом, должен существовать внешний энергетический ресурс - исходный субстрат. С помощью ферментных систем организм извлекает энергию из этого субстрата в реакциях его ступенчатого окисления, приводящего к освобождению энергии небольшими порциями.

У прокариот известны три способа получения энергии: разные виды брожения, дыхания и фотосинтеза. В процессах брожения в определенных окислительно-восстановительных реакциях образуются нестабильные молекулы, фосфатная группа которых содержит много свободной энергии. Эта группа с помощью соответствующего фермента переносится на молекулу АДФ, что приводит к образованию АТФ. Реакции, в которых энергия, освобождающаяся на определенных окислительных этапах брожения запасается в молекулах АТФ, получили название субстратного фосфорилирования. Их особенностью является катализирование растворимыми ферментами. Образующийся в восстановительной части окислительно-восстановительных преобразований сбраживаемого субстрата восстановитель (НАД·H 2 , восстановленный ферредоксин) переносит электроны на подходящий эндогенный акцептор электрона (пируват, ацетальдегид, ацетон и др.) или освобождается в виде газообразного водорода (H 2).

Нередко в процессах брожения окислительные и восстановительные преобразования могут происходить внутримолекулярно, т. е. одна часть образуемой молекулы подвергается восстановлению, другая - окислению. Многие прокариоты получают энергию в процессе дыхания. Они окисляют восстановленные вещества с относительно низким окислительно-восстановительным потенциалом (E 0 ), возникающие в реакциях промежуточного метаболизма или являющиеся исходными субстратами, например НАД·H 2 , сукцинат, лактат, NH 3 , H 2 S и др. (табл. 11).

Окисление происходит в результате переноса электронов через локализованную в мембране дыхательную электронтранс-портную цепь, состоящую из набора переносчиков, и приводит в большинстве случаев к восстановлению молекулярного кислорода до H 2 O. Таким образом, в процессе дыхания молекулы одних веществ окисляются, других - восстанавливаются, т. е. окислительно-восстановительные процессы в этом случае всегда межмолекулярны.

Наиболее широко распространена среди прокариот способность окислять органические субстраты. Обнаружены также весьма специализированные группы прокариот, способные окислять различные неорганические субстраты (H 2 , NH 4 + , NO 2 – , H 2 S, S 0 , S 2 O 3 2– , Fe 2+ и др.) с соответствующим восстановлением O 2 . Наконец, прокариоты могут окислять органические и неорганические вещества с использованием в качестве конечного акцептора электронов не молекулярного кислорода, а целого ряда органических и неорганических соединений (фумарат, CO 2 , NO 3 – , S 0 , S0 4 2– , S 0 , S0 3 2– и др.). Количество освобождающейся энергии определяется градиентом окислительно-восстановительных потенциалов при переносе электронов от донора к акцептору.

У прокариот известны три типа фотосинтеза: I - зависимый от бактериохлорофилла бескислородный фотосинтез, осуществляемый группами зеленых, пурпурных бактерий и гелиобактерий; II - зависимый от хлорофилла кислородный фотосинтез, свойственный цианобактериям и прохлорофитам; III - зависимый от бактериородопсина бескислородный фотосинтез, найденный у экстремально галофильных архебактерий. В основе фотосинтеза I и II типа лежит поглощение солнечной энергии различными пигментами, приводящее к разделению электрических зарядов, возникновению восстановителя с низким и окислителя с высоким окислительно-восстановительным потенциалом. Перенос электронов между этими двумя компонентами приводит к выделению свободной энергии. В фотосинтезе III типа окислительно-восстановительные переносчики отсутствуют. В этом случае энергия в доступной для организма форме возникает в результате светозависимого перемещения H + через мембрану.

В обеих системах электронного транспорта есть флавопротеины, хиноны, цитохромы и белки, содержащие негемовое железо, позволяющие переносить электроны вниз по термодинамической лестнице. Таким образом, по существу обе электронтранспортные цепи являются окислительными. В процессах дыхания и фотосинтеза освобождающаяся при переносе электронов энергия запасается первоначально в форме электрохимического трансмембранного градиента ионов водорода (Dm H +), т. е. имеет место превращение химической и электромагнитной энергии в электрохимическую. Последняя затем может быть использована для синтеза АТФ. Поскольку в обоих процессах синтез АТФ обязательно связан с мембранами, реакции, приводящие к его образованию, получили название мембранзависимого фосфорилирования. Последнее подразделяется на два вида: окислительное (АТФ образуется в процессе электронного переноса при окислении химических соединений) и фотосинтетическое (синтез АТФ связан с фотосинтетическим электронным транспортом) фосфорилирование. Следует подчеркнуть, что принципы генерации АТФ при фотосинтезе и дыхании, т. е. механизмы мембранзависимого фосфорилирования, одинаковы. Таким образом, энергия, получаемая в процессах брожения, дыхания или фотосинтеза, запасается в определенных формах.

Существуют две универсальные формы энергии, которые могут быть использованы в клетке для выполнения разного рода работы: энергия высокоэнергетических химических соединений (химическая) и энергия трансмембранного потенциала ионов водорода (электрохимическая).

ВЫСОКОЭНЕРГЕТИЧЕСКИЕ СОЕДИНЕНИЯ. АТФ - УНИВЕРСАЛЬНАЯ ФОРМА ХИМИЧЕСКОЙ ЭНЕРГИИ В КЛЕТКЕ

Центральное место в процессах переноса химической энергии принадлежит системе АТФ. АТФ образуется в реакциях субстратного и мембранзависимого фосфорилирования. При субстратном фосфорилировании источником образования АТФ служат реакции двух типов:

I. Субстрат ~ Ф 20 + АДФ « субстрат + АТФ;

II. Субстрат ~ X + АДФ + Фц Н « субстрат + Х + АТФ.

20 Символ "~", введенный американским биохимиком Ф. Липманом (F. Lipmann), служит для обозначения макроэргической связи.

В реакциях первого типа осуществляется перенос высокоэнергетической фосфатной группы от молекулы-донора на АДФ катализируемый соответствующими киназами. Реакциями такого типа являются реакции субстратного фосфорилирования на пути анаэробного превращения Сахаров. У прокариот, имеющих ЦТК, реакция превращения сукцинил-КоА в янтарную кис лоту сопровождается запасанием энергии в фосфатной связь ГТФ, который затем отдает фосфатную группу АДФ. Эту реакцию можно рассматривать как реакцию субстратного фосфорилирования второго типа.

АТФ образуется также за счет энергии Dm в процессе мембранзависимого фосфорилирования. В общих чертах этот механизм фосфорилирования изложен в следующем разделе.

Молекула АТФ содержит две макроэргические фосфатные связи, при гидролизе которых высвобождается значительное количество свободной энергии:

АТФ + H 2 ® АДФ + Ф Н; DG 0 " = –31,8 кДж/моль;

АДФ + H 2 ® АМФ + Ф Н; DG 0 " = –31,8 кДж/моль;

Отщепление последней фосфатной группы от молекулы АМФ приводит к значительно меньшему высвобождению свободной энергии:

АМФ + H 2 ® аденозин + Ф Н; DG 0 " = –14,3 кДж/моль;

Молекула АТФ обладает определенными свойствами, которые и привели к тому, что в процессе эволюции ей была отведена столь важная роль в энергетическом метаболизме клеток. Термодинамически молекула АТФ нестабильна, что вытекает из большой отрицательной величины DG ее гидролиза. В то же время скорость неферментативного гидролиза АТФ в нормальных условиях очень мала, т. е. химически молекула АТФ высокостабильна. Малые размеры молекулы АТФ позволяют ей легко диффундировать в различные участки клетки, где необходим подвод энергии извне для выполнения химической, осмотической, механической работы.

И наконец, еще одно свойство молекулы АТФ, обеспечившее ей центральное место в энергетическом метаболизме клетки. Изменение свободной энергии при гидролизе АТФ составляет - 31,8 кДж/моль.

Броже́ние (тж. сбра́живание , фермента́ция ) - «это такой метаболический процесс, при котором регенерируется АТФ, а продукты расщепления органического субстрата могут служить одновременно и донорами, и акцепторами водорода» . Брожение - это анаэробный (происходящий без участия кислорода) метаболический распад молекул питательных веществ, например глюкозы. По выражению Луи Пастера, «брожение - это жизнь без кислорода». Большинство типов брожения осуществляют микроорганизмы - облигатные или факультативные анаэробы.

Брожение не высвобождает всю имеющуюся в молекуле энергию, поэтому промежуточные продукты брожения могут использоваться в ходе клеточного дыхания.

Биохимия

Брожение - это процесс, важный в анаэробных условиях, в отсутствие окислительного фосфорилирования. В ходе брожения, как и в ходе гликолиза, образуется АТФ. Во время брожения пируват преобразуется в различные вещества.

Хотя на последнем этапе брожения (превращения пирувата в конечные продукты брожения) не освобождается энергия, он крайне важен для анаэробной клетки, поскольку на этом этапе регенерируется никотинамидадениндинуклеотид (NAD +), который требуется для гликолиза. Это важно для нормальной жизнедеятельности клетки, поскольку гликолиз для многих организмов - единственный источник АТФ в анаэробных условиях.

В ходе брожения происходит частичное окисление субстратов, при котором водород переносится на NAD + (никотинамидадениндинуклеотид). В ходе других этапов брожения его промежуточные продукты служат акцепторами водорода, входящего в состав NADH; в ходе регенерации NAD + они восстанавливаются, а продукты восстановления выводятся из клетки.

Конечные продукты брожения содержат химическую энергию (они не полностью окислены), но считаются отходами, поскольку не могут быть подвергнуты дальнейшему метаболизму в отсутствие кислорода (или других высоко-окисленных акцепторов электронов) и часто выводятся из клетки. Следствием этого является тот факт, что получение АТФ брожением менее эффективно, чем путём окислительного фосфорилирования, когда пируват полностью окисляется до двуокиси углерода. В ходе разных типов брожения на одну молекулу глюкозы получается от двух до четырех молекул АТФ (ср. около 36 молекул путём аэробного дыхания).

Продукты реакции брожения

Продукты брожения - это по сути отходы, получившиеся во время превращения пирувата с целью регенерации NAD + в отсутствие кислорода. Стандартные примеры продуктов брожения - этанол (питьевой спирт), молочная кислота, водород и углекислый газ. Однако продукты брожения могут быть более экзотическими, такими как масляная кислота, ацетон, пропионовая кислота, 2,3-бутандиол и др.

Основные типы брожения

1.Спиртовое брожение (осуществляется дрожжами и некоторыми видами бактерий), в ходе него пируват расщепляется на этанол и двуокись углерода. Из одной молекулы глюкозы в результате получается две молекулы питьевого спирта (этанола) и две молекулы углекислого газа. Этот вид брожения очень важен в производстве хлеба, пивоварении, виноделии и винокурении . Если в закваске высока концентрация пектина, может также производиться небольшое количество метанола. Обычно используется только один из продуктов; в производстве хлеба алкоголь улетучивается при выпечке, а в производстве алкоголя двуокись углерода обычно уходит в атмосферу, хотя в последнее время её стараются утилизировать.

2.Молочнокислое брожение, в ходе которого пируват восстанавливается до молочной кислоты, осуществляют молочнокислые бактерии и другие организмы. При сбраживании молока молочнокислые бактерии преобразуют лактозу в молочную кислоту, превращая молоко в кисломолочные продукты (йогурт, простокваша и др.); молочная кислота придаёт этим продуктам кисловатый вкус.

Молочнокислое брожение происходит также в мышцах животных, когда потребность в энергии выше, чем обеспечиваемая дыханием, и кровь не успевает доставлять кислород.

Обжигающие ощущения в мышцах во время тяжелых физических упражнений соотносятся с получением молочной кислоты и сдвигом к анаэробному гликолизу , поскольку кислород преобразуется в двуокись углерода аэробным гликолизом быстрее, чем организм восполняет запас кислорода; а болезненность в мышцах после физических упражнений вызвана микротравмами мышечных волокон.

Пировиноградная кислота - химическое соединение с формулой СН 3 СОСООН, органическая кетокислота. Биохимическая роль Пируват - важное химическое соединение в биохимии. Он является конечным продуктом метаболизма глюкозы в процессе гликолиза. Одна молекула глюкозы превращается при этом в две молекулы пировиноградной кислоты. Дальнейший метаболизм пировиноградной кислоты возможен двумя путями - аэробным и анаэробным.

В условиях достаточного поступления кислорода, пировиноградная кислота превращается в ацетил-кофермент А, являющийся основным субстратом для серии реакций, известных как цикл Кребса, или дыхательный цикл, цикл трикарбоновых кислот. Пируват также может быть превращён в анаплеротической реакции в оксалоацетат. Оксалоацетат затем окисляется до углекислого газа и воды. Эти реакции названы по имени Ханса Адольфа Кребса, биохимика, получившего вместе с Фрицем Липманном Нобелевскую премию по физиологии в 1953 году за исследования биохимических процессов клетки. Цикл Кребса называют также циклом лимонной кислоты, поскольку лимонная кислота является одним из промежуточных продуктов цепи реакций цикла Кребса.

Если кислорода недостаточно, пировиноградная кислота подвергается анаэробному расщеплению с образованием молочной кислоты у животных и этанол у растений. При анаэробном дыхании в клетках пируват, полученный при гликолизе, преобразуется в лактат при помощи фермента лактатдегидрогеназы и NADP в процессе лактатной ферментации, либо в ацетальдегид и затем в этанол в процессе алкогольной ферментации.

Клеточное или тканевое дыхание - совокупность биохимических реакций, протекающих в клетках живых организмов, в ходе которых происходит окисление углеводов, липидов и аминокислот до углекислого газа и воды. Высвобожденная энергия запасается в химических связях макроэргических соединений (АТФ и др.) и может быть использована по мере необходимости. Входит в группу процессов катаболизма

Пассивный транспорт включает простую и облегченную диф­фузию - процессы, которые не требуют затраты энергии. Диффузия – транспорт молекул и ионов через мембрану из области с высокой в область с низкой их концентрацией, те. вещества поступают по градиенту концентрации. Диффузия воды через полупроницаемые мембраны называется осмосом. Вода способна проходить также через мембранные поры, образованные белками, и переносить молекулы и ионы растворенных в ней веществ.Механизмом простой диффузии осуществляется перенос мелких молекул (например, О2, Н2О, СО2); этот процесс малоспецифичен и протекает со ско­ростью, пропорциональной градиенту концентрации транспортируемых молекул по обеим сторонам мембраны. Облегченная диффузия осущест­вляется через каналы и (или) белки-переносчики, которые обладают специфичностью в отношении транспортируемых молекул. В качестве ионных каналов выступают трансмембранные белки, образующие мел­кие водные поры, через которые по электрохимическому градиенту транспортируются мелкие водо растворимые молекулы и ионы. Белки-переносчики также являются трансмембранными белками, которые пре­терпевают обратимые изменения конформации, обеспечивающие транс­порт специфических молекул через плазмолемму. Они функционируют в механизмах как пассивного, так и активного транспорта.

Активный транспорт является энергоемким процессом, благода­ря которому перенос молекул осуществляется с помощью белков-пере­носчиков против электрохимического градиента. Примером механизма, обеспечивающего противоположно направленный активный транспорт ионов, служит натриево-калиевый насос (представленный белком-пере­носчиком Nа+-К+-АТФазой), благодаря которому ионы Na+ выводятся из цитоплазмы, а ионы К+ одновременно переносятся в нее. Концентрация К+ внутри клетки в 10-20 раз выше, чем снаружи, а концентрация Na наоборот. Такая разница в концентрациях ионов обеспечивается работой (Na*-K*> насоса. Для поддержания данной концентрации происходит перенос трех ионов Na из клетки на каждые два иона К* в клетку. В этом процессе принимает участие белок в мембране, выполняющий функцию фермента, расщепляющего АТФ, с высвобождением энергии, необходимой для работы насоса.
Участие специфических мембранных белков в пассивном и активном транспорте свидетельствует о высокой специфичности этого процесса. Этот ме­ханизм обеспечивает поддержание постоянства объема клетки (путем регуляции осмотического давления), а также мембранного потенциала. Активный транспорт глюкозы в клетку осуществляется белком-перенос­чиком и сочетается с однонаправленным переносом иона Nа+.



Облегченный транспорт ионов опосредуется особыми трансмем­бранными белками - ионными каналами, обеспечивающими избиратель­ный перенос определенных ионов. Эти каналы состоят из собственно транспортной системы и воротного механизма, который открывает канал на некоторое время в ответ на (а) изменение мембранного потен­циала, (б) механическое воздействие (например, в волосковых клетках внутреннего уха), (в) связывание лиганда (сигнальной молекулы или иона).

Транспорт через мембрану малых молекул.

Мембранный транспорт может включать однонаправленный перенос молекул какого-то вещества или совместный транспорт двух различных молекул в одном или противоположных направлениях.

Через нее с различной скоростью проходят разные молекулы и чем больше размер молекул, тем меньше скорость прохождения их через мембрану. Это свойство определяет плазматическую мембрану как осмотический барьер. Максимальной проникающей способностью обладает вода и растворенные в ней газы. Одно из важнейших свойств плазматической мембраны связано со способностью пропускать в клетку или из нее различные вещества. Это необходимо для поддержания постоянства ее состава (т.е. гомеостаза).

Транспорт ионов.

В отличие от искусственных бислойных липидных мембран, естественные мембраны, и в первую очередь плазматическая мембрана, все же способны транспортировать ионы. Проницаемость для ионов мала, причем скорость прохождения разных ионов неодинакова. Более высокая скорость прохождения для катионов (K+, Na+) и значительно ниже для анионов (Cl-). Транспорт ионов через плазмалемму проходит за счет участия в этом процессе мембранных транспортных белков - пермеаз. Эти белки могут вести транспорт в одном направлении одного вещества (унипорт) или нескольких веществ одновременно (симпорт), или же вместе с импортом одного вещества выводить из клетки другое (антипорт). Так, например, глюкоза может входить в клетки симпортно вместе с ионом Na+. Транспорт ионов может происходить по градиенту концентрации - пассивно без дополнительной затраты энергии. Так, например, в клетку проникает ион Na+ из внешней среды, где его концентрация выше, чем в цитоплазме.

Наличие белковых транспортных каналов и переносчиков казалось бы должно приводить к уравновешиванию концентраций ионов и низкомолекулярных веществ по обе стороны мембраны. На самом же деле это не так: концентрация ионов в цитоплазме клеток резко отличается не только от таковой во внешней среде, но даже от плазмы крови, омывающей клетки в организме животных.

Оказывается в цитоплазме концентрация K+ почти в 50 раз выше, а Na+ ниже, чем в плазме крови. Причем это различие поддерживается только в живой клетке: если клетку убить или подавить в ней метаболические процессы, то через некоторое время ионные различия по обе стороны плазматической мембраны исчезнут. Можно просто охладить клетки до +20С, и через некоторое время концентрация K+ и Na+ по обе стороны от мембраны станут одинаковыми. При нагревании клеток это различие восстанавливается. Это явление связано с тем, что в клетках существуют мембранные белковые переносчики, которые работают против градиента концентрации, затрачивая при этом энергию за счет гидролиза АТФ. Такой тип работы носит название активного транспорта , и он осуществляется с помощью белковых ионных насосов . В плазматической мембране находится двухсубъединичная молекула (K+ + Na+)-насоса, которая одновременно является и АТФазой. Этот насос при работе откачивает за один цикл 3 иона Na+ и закачивает в клетку 2 иона K+ против градиента концентрации. При этом затрачивается одна молекула АТФ, идущая на фосфорилирование АТФазы, в результате чего Na+ переносится через мембрану из клетки, а K+ получает возможность связаться с белковой молекулой и затем переносится в клетку. В результате активного транспорта с помощью мембранных насосов происходит также регуляция в клетке концентрации и двухвалентных катионов Mg2+ и Ca2+, также с затратой АТФ.

Так активный транспорт глюкозы, которая симпортно (одновременно) проникает в клетку вместе с потоком пассивно транспортируемого иона Na+, будет зависеть от активности (K+ + Na+)-насоса. Если этот (K+-Na+)- насос заблокировать, то скоро разность концентрации Na+ по обе стороны мембраны исчезнет, сократится при этом диффузия Na+ внутрь клетки, и одновременно прекратится поступление глюкозы в клетку. Как только восстановится работа (K+-Na+)-АТФазы и создается разность концентрации ионов, то сразу возрастает диффузный поток Na+ и одновременно транспорт глюкозы. Подобно этому осуществляется через мембрану и поток аминокислот, которые переносятся специальными белками-переносчиками, работающими как системы симпорта, перенося одновременно ионы.

Активный транспорт сахаров и аминокислот в бактериальных клетках обусловлен градиентом ионов водорода. Само по себе участие специальных мембранных белков, участвующих в пассивном или активном транспорте низкомолекулярных соединений, указывает на высокую специфичность этого процесса. Даже в случае пассивного ионного транспорта белки “узнают” данный ион, взаимодействуют с ним, связываются

специфически, меняют при этом свою конформацию и функционируют. Следовательно, уже на примере транспорта простых веществ мембраны выступают как анализаторы, как рецепторы. Особенно такая рецепторная роль проявляется при поглощении клеткой биополимеров.