Теория электрической диссоциации. Электролитическая диссоциация

Электролиты и неэлектролиты

Из уроков физики известно, что растворы од­них веществ способны проводить электрический ток, а других - нет.

Вещества, растворы которых проводят электрический ток, называются электролитами .

Вещества, растворы кото­рых не проводят электрический ток, называются неэлектролитами . Например растворы сахара, спирта, глюкозы и некоторых других веществ не проводят элек­трический ток.

Электролитические диссоциация и ассоциация

Почему же растворы элек­тролитов проводят электри­ческий ток?

Шведский ученый С. Ар­рениус, изучая электропро­водность различных веществ, пришел в 1877 г. к выводу, что причиной электропровод­ности является наличие в растворе ионов , которые образуются при растворении электролита в воде.

Процесс распада электролита на ионы называ­ется электролитической диссоциацией .

С. Аррениус, который придерживался физиче­ской теории растворов, не учитывал взаимодей­ствия электролита с водой и считал, что в раство­рах находятся свободные ионы. В отличие от него русские химики И. А. Каблуков и В. А. Кистяков- ский применили к объяснению электролитической диссоциации химическую теорию Д. И. Менделеева и доказали, что при растворении электролита про­исходит химическое взаимодействие растворенного вещества с водой, которое приводит к образованию гидратов, а затем они диссоциируют на ионы . Они считали, что в растворах находятся не свободные, не «голые» ионы, а гидратированные, т. е. «одетые в шубку» из молекул воды.

Молекулы воды представляют собой диполи (два полюса), так как атомы водорода расположены под углом 104,5°, благодаря чему молекула имеет угло­вую форму. Молекула воды схематически представ­лена ниже.

Как правило, легче всего диссоциируют веще­ства с ионной связью и, соответственно, с ионной кристаллической решеткой, так как они уже состо­ят из готовых ионов. При их растворении диполи во­ды ориентируются противоположно заряженными концами вокруг положительных и отрицательных ионов электролита.

Между ионами электролита и диполями воды возникают силы взаимного притяжения . В ре­зультате связь между ионами ослабевает, и про­исходит переход ионов из кристалла в раствор. Очевидно, что последовательность про­цессов, происходящих при диссоциации веществ с ионной связью (солей и щелочей), будет такой:

1) ориентация молекул (диполей) воды около ио­нов кристалла;

2) гидратация (взаимодействие) молекул воды с ионами поверхностного слоя кристалла;

3) диссоциация (распад) кристалла электролита на гидратированные ионы.

Упрощенно происходящие процессы можно от­разить с помощью следующего уравнения:

Аналогично диссоциируют и электролиты, в мо­лекулах которых ковалентная связь (например, мо­лекулы хлороводорода HCl, смотри ниже); только в этом случае под влиянием диполей воды происходит превращение ковалентной полярной связи в ион­ную; последовательность процессов, происходящих при этом, будет такой:

1) ориентация молекул воды вокруг полюсов моле­кул электролита;

2) гидратация (взаимодействие) молекул воды с молекулами электролита;

3) ионизация молекул электролита (превращение ковалентной полярной связи в ионную);

4) диссоциация (распад) молекул электролита на гидратированные ионы.


Упрощенно процесс диссоциации соляной кис­лоты можно отразить с помощью следующего урав­нения:

Следует учитывать, что в растворах электро­литов хаотически движущиеся гидратированные ионы могут столкнуться и вновь объединиться между собой. Этот обратный процесс называется ассоциацией. Ассоциация в растворах происходит параллельно с диссоциацией, поэтому в уравнени­ях реакций ставят знак обратимости.


Свойства гидратированных ионов отличаются от свойств негидратированных. Например, негидрати­рованный ион меди Cu 2+ - белый в безводных кри­сталлах сульфата меди (II) и имеет голубой цвет, когда гидратирован, т. е. связан с молекулами во­ды Cu 2+ nH 2 O. Гидратированные ионы имеют как постоянное, так и переменное число молекул воды.

Степень электролитической диссоциации

В растворах электролитов наряду с ионами при­сутствуют и молекулы. Поэтому растворы электро­литов характеризуются степенью диссоциации , ко­торая обозначается греческой буквой а («альфа»).

Это отношение числа частиц, распавшихся на ионы (N g), к общему числу растворенных частиц (N p).

Степень диссоциации электролита определяется опытным путем и выражается в долях или про­центах. Если а = 0, то диссоциация отсутствует, а если а = 1, или 100 %, то электролит полностью распадается на ионы. Различные электролиты име­ют различную степень диссоциации, т. е. степень диссоциации зависит от природы электролита. Она также зависит и от концентрации: с разбавлением раствора степень диссоциации увеличивается.

По степени электролитической диссоциации электролиты делятся на сильные и слабые.

Сильные электролиты - это электролиты, кото­рые при растворении в воде практически полностью диссоциируют на ионы. У таких электролитов зна­чение степени диссоциации стремится к единице.

К сильным электролитам относятся:

1) все растворимые соли;

2) сильные кислоты, например: H 2 SO 4 , HCl, HNO 3 ;

3) все щелочи, например: NaOH, KOH.

Слабые электролиты - это такие электроли­ты, которые при растворении в воде почти не дис­социируют на ионы. У таких электролитов значе­ние степени диссоциации стремится к нулю.

К слабым электролитам относятся:

1) слабые кислоты - H 2 S, H 2 CO 3 , HNO 2 ;

2) водный раствор аммиака NH 3 H 2 O;

4) некоторые соли.

Константа диссоциации

В растворах слабых электролитов вследствие их неполной диссоциации устанавливается динамичес­кое равновесие между недиссоциированными моле­кулами и ионами . Например, для уксусной кислоты:

Можно применить к этому равновесию закон действующих масс и записать выражение констан­ты равновесия:

Константу равновесия, характеризующую про­цесс диссоциации слабого электролита, называют константой диссоциации .

Константа диссоциации характеризует способ­ность электролита (кислоты, основания, воды) диссо­циировать на ионы . Чем больше константа, тем лег­че электролит распадается на ионы, следовательно, тем он сильнее. Значения констант диссоциации для слабых электролитов приводятся в справочниках.

Основные положения теории электролитической диссоциации

1. При растворении в воде электролиты диссо­циируют (распадаются) на положительные и отри­цательные ионы.

Ионы - это одна из форм существования хими­ческого элемента. Например, атомы металла натрия Na 0 энергично взаимодейству­ют с водой, образуя при этом щелочь (NaOH) и водород Н 2 , в то время как ионы натрия Na + таких продуктов не обра­зуют. Хлор Cl 2 имеет желто­зеленый цвет и резкий запах, ядовит, а ионы хлора Cl — бесцветны, не ядовиты, лишены запаха.

Ионы - это положительно или отрицательно заряженные частицы, в которые превращаются атомы или группы атомов одного или нескольких химических элементов в результате отдачи или присоединения электронов.

В растворах ионы беспорядочно передвигаются в различных направлениях.

По составу ионы делятся на простые - Cl — , Na + и сложные - NH 4 + , SO 2 — .

2. Причиной диссоциации электролита в вод­ных растворах является его гидратация, т. е. взаи­модействие электролита с молекулами воды и раз­рыв химической связи в нем.

В результате такого взаимодействия образуются гидратированные, т. е. связанные с молекулами во­ды, ионы. Следовательно, по наличию водной обо­лочки ионы делятся на гидратированные (в раствоpax и кристаллогидратах) и негидратированные (в безводных солях).

3. Под действием электрического тока положитель­но заряженные ионы движутся к отрицательному по­люсу источника тока - катоду и поэтому называют­ся катионами, а отрицательно заряженные ионы движутся к положительному полюсу ис­точника тока - аноду и по­этому называются анионами.

Следовательно, существу­ет еще одна классификация ионов - по знаку их заряда .

Сумма зарядов катионов (Н + , Na + , NH 4 + , Cu 2+) равна сумме зарядов анионов (Cl — , OH — , SO 4 2-), вследствие че­го растворы электролитов (HCl, (NH 4) 2 SO 4 , NaOH, CuSO 4) остаются электронейтральными.

4. Электролитическая диссоциация - процесс обратимый для слабых электролитов.

Наряду с процессом диссоциации (распад элек­тролита на ионы) протекает и обратный процесс - ассоциация (соединение ионов). Поэтому в уравне­ниях электролитической диссоциации вместо знака равенства ставят знак обратимости, например:

5. Не все электролиты в одинаковой мере диссо­циируют на ионы.

Зависит от природы элек­тролита и его концентрации. Химические свойства растворов электролитов определяются свойствами тех ионов, которые они образуют при диссоциации.

Свойства растворов слабых электролитов об­условлены молекулами и ионами, образовавшими­ся в процессе диссоциации, которые находятся в динамическом равновесии друг с другом.

Запах уксусной кислоты обусловлен наличием молекул CH 3 COOH, кислый вкус и изменение окра­ски индикаторов связаны с наличием в растворе ионов H + .

Свойства растворов сильных электролитов опре­деляются свойствами ионов, которые образуются при их диссоциации.

Например, общие свойства кислот, такие как кислый вкус, изменение окраски индикаторов и др., обусловлены наличи­ем в их растворах катионов водорода (точнее, ионов оксония H 3 O +). Общие свойства щелочей, такие как мылкость на ощупь, изменение окраски индикаторов и др. связаны с присутствием в их рас­творах гидроксид-ионов OH — , а свойства солей - с распадом их в растворе на катионы металла (или аммония) и анионы кислотных остатков.

Согласно теории электролитической диссоциа­ции все реакции в водных растворах электролитов являются реакциями между ионами . Этим обуслов­лена высокая скорость многих химических реак­ций в растворах электролитов.

Реакции, протекающие между ионами, называ­ют ионными реакциями , а уравнения этих реак­ций - ионными уравнениями .

Реакции ионного обмена в водных растворах мо­гут протекать:

1. Необратимо , до конца.

2. Обратимо , то есть протекать одновременно в двух противоположных направлениях. Реакции обмена между сильными электролита­ми в растворах протекают до конца или практи­чески необратимы, когда ионы, соединяясь друг с другом, образуют вещества:

а) нерастворимые;

б) малодиссоциирующие (слабые электролиты);

в) газообразные.

Приведем несколько примеров молекулярных и сокращенных ионных уравнений:

Реакция необратима , т. к. один из ее про­дуктов - нерастворимое вещество.

Реакция нейтрализации необратима , т. к. об­разуется малодиссоциирующее вещество - вода.

Реакция необратима , т. к. образуется газ CO 2 и малодиссоциирующее вещество - вода.

Если среди исходных веществ и среди продуктов реакции имеются слабые электролиты или мало­растворимые вещества, то такие реакции являются обратимыми, т. е. до конца не протекают.

В обратимых реакциях равновесие смещается в сторону образования наименее растворимых или наименее диссоциированных веществ.

Например:

Равновесие смещается в сторону образования более слабого электролита - H 2 O. Однако до конца такая реакция протекать не будет: в растворе оста­ются недиссоциированные молекулы уксусной кис­лоты и гидроксид-ионы.

Если исходные вещества - сильные электро­литы, которые при взаимодействии не образуют нерастворимых или малодиссоциирующих веществ или газов, то такие реакции не протекают: при сме­шивании растворов образуется смесь ионов.

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости

Цель работы. Приобрести навыки составления молекулярных и ион- ных уравнений реакций, протекающих в растворах электролитов. Нау- читься определять направление протекания ионных реакций.

При растворении некоторых веществ в воде (или других поляр- ных растворителях) под воздействием молекул растворителя проис- ходит распад молекул данного вещества на ионы. В результате этого процесса раствор содержит не только молекулы растворителя и рас- творенного вещества, но и образовавшиеся ионы. Растворы веществ, которые при растворении в воде или других полярных растворителях распадаются на ионы, называются электролитами.

Процесс распада молекул растворенного вещества (электроли- та) на ионы под действием полярных молекул растворителя называ- ется электролитической диссоциацией.

Растворы электролитов обладают ионной электропроводностью (в переносе электрических зарядов участвуют ионы) и являются про- водниками второго рода.

Количественной характеристикой процесса распада растворенно- го вещества на ионы является степень электролитической диссоциа- ции – α. Степенью диссоциации называется отношение числа молекул растворенного вещества, распавшихся на ионы в растворе (n), к об- щему числу растворенных молекул (N):

Степень электролитической диссоциации определяется опытным пу- тем и выражается либо в долях единицы, либо в процентах. Степень дис- социации электролита зависит от природы электролита, концентрации и температуры.

По степени диссоциации электролита в растворе с молярной кон-

центрацией эквивалента, равной 0,1 моль/л (0,1 н.), растворы условно

делят на три группы: сильные, слабые и средние электролиты. Если в

0,1 н. растворе электролита α > 0,3 (30 \%) электролит считается сильным, α ≤ 0,03 (3 \%) – слабым электролитом. Электролиты с промежуточными значениями степени диссоциации считают средними.

К сильным электролитам, если растворителем является вода, отно-

– кислоты: НNO3, H2SO4, НCNS, НCl, НClO3, HClO4, HBr, HВrО3, HВrО4, НI, НIO3 HMnO4, H2SeO4, HReO4, HTcO4; а также кислоты Н2СrO4, H4P2O7, H2S2O6 которые являются сильными по первой ступени дис- социации, т. е. при отрыве первого иона Н+;

– основания: гидроксиды щелочных (Li, Na, K, Rb, Cs, Fr) и щелочнозе- мельных металлов (Ca, Sr, Ba, Ra): LiOH, NаОН, KОH, RbОН, CsОН, FrОН, Ca(OH)2, Ba(OH)2, Sr(OH)2; Ra(OH)2; а также TlOH;

– большинство солей. Исключение: Fe(SCN)3, Mg(CN)2, HgCl2, Hg(CN)2.

К слабым электролитам относятся:

– кислоты: H2CO3, НClO, H2S, H3BO3, HCN, H2SO3, H2SiO3, CH3COOH, HCOOH, H2C2O4 и т. д. (Приложение, табл. 2);

– основания (р- и d-элементов): Be(OH)2, Mg(OH)2, Fe(OH)2, Zn(OH)2; гид- роксид аммония NH4OH, а также органические основания – амины (CH3NH2) и амфолиты (H3N+CH2COOˉ).

Вода является очень слабым электролитом (H2O) α = 2·10-9, т. е.

молекулы воды также могут распадаться на ионы за счет взаимодействия молекул между собой.

Сильные электролиты – вещества, которые при растворении в воде полностью распадаются на ионы, т. е. диссоциируют практически нацело. После разрыва связи между ионами в молекуле электролита под действи- ем молекул воды, образовавшиеся ионы окружают себя молекулами воды и поэтому в растворе находятся в гидратированном состоянии. С учетом гидратации ионов уравнение электролитической диссоциации можно бы- ло бы записать таким образом:

Na+Clˉ (к) + (x+y) H2О + + ˉ

Уравнение диссоциации сильного электролита записывают упрощенно,

например:

NaCl → Na+ + Clˉ;

HNO3 → H+ + NO3ˉ;

Ва(ОН)2 → Ва2+ + 2ОНˉ

К слабым электролитам относятся вещества, которые при растворе- нии в воде частично диссоциируют на ионы. Между ионами, концентра- ция которых в растворе невелика, и реально существующими недиссоции- рованными молекулами устанавливается равновесие:

CH3COOH ⇄ CH3COOˉ + H+; H2О ⇄ H+ + ОНˉ.

Такая запись означает, что в растворе одновременно происходят два

процесса: распад молекул на ионы и образование молекул из ионов. Рав- новесие в растворах слабых электролитов смещено в сторону исходных продуктов, поэтому слабые электролиты в растворе существуют преиму- щественно в виде молекул.

Химические свойства растворов электролитов зависят от свойств ио- нов и молекул, находящихся в растворе. Направление протекания реакций между ионами и молекулами в растворах электролитов определяется воз- можностью образования малорастворимых веществ или слабых электро- литов. Если в результате реакции не происходит образования малорас- творимого вещества или слабого электролита, то такая реакция протекать не может. Например, при сливании растворов нитрата натрия и хлорида калия реакция не протекает, так как по обменной реакции из ионов нахо- дящихся в растворе не может образоваться какое либо малорастворимое вещество или слабый электролит. Эти соли относятся к сильным электро- литам и хорошо растворяются в воде, поэтому в растворе будет находить-

ся смесь ионов:

Na+ + NO3ˉ + K+ + Clˉ,

из которых состояли исходные вещества. Следовательно, в этом случае нельзя написать молекулярное уравнение обменной реакции

NaNO3 + KCl ≠ KNO3 + NaCl.

Реакцию, протекающую в растворе, можно представить в виде:

Молекулярного уравнения реакции;

Ионно-молекулярного уравнения (полного или сокращенного).

Уравнение реакции, содержащее только формулы недиссоциирован- ных веществ, называется молекулярным уравнением. Молекулярная форма уравнения показывает, какие вещества и в каком количестве участвуют в реакции. Оно позволяет производить необходимые расчеты, связанные с данной реакцией. Уравнение, содержащее формулы недиссоциированных слабых электролитов и ионы сильных электролитов, называется полным ионным или ионно-молекулярным уравнением реакции.

Сократив одинаковые продукты в левой и правой части ионно- молекулярного уравнения реакции, получаем сокращенное или краткое ионное уравнение реакции. Ионное уравнение, не содержащее одинако- вых веществ (ионов или молекул) в левой и правой части реакции, назы- вается сокращенным или кратким ионным уравнением реакции. Это урав- нение и отражает сущность происходящей реакции.

При записи ионных уравнений реакций необходимо помнить:

1) сильные электролиты следует записывать в виде отдельных со-

ставляющих их ионов;

2) слабые электролиты и малорастворимые вещества следует запи-

сывать в виде молекул.

В качестве примера рассмотрим взаимодействие соды с кислотой. В молекулярном уравнении реакции исходные вещества и продукты реак- ции записывают в виде молекул:

Na2CO3 + H2SO4 = Na2SO4 + CO2 + H2O.

Принимая во внимание, что в водном растворе молекулы электроли-

тов распадаются на ионы, полное ионное уравнение этой реакции имеет вид

CO 2–

В ионном уравнении слабые электролиты, газы и малорастворимые вещества записывают в виде молекул. Знак ↓, стоящий при формуле веще- ства, обозначает, что это вещество выведено из сферы реакции в виде

осадка, а знак обозначает, что вещество удаляется из сферы реакции в виде газа.

Вещества, молекулы которых полностью диссоциируют на ионы (сильные электролиты), записывают в виде ионов. Сумма электрических зарядов левой части уравнения должна быть равна сумме электрических зарядов правой части.

При написании ионных уравнений следует руководствоваться табли- цей растворимости кислот, оснований и солей в воде, т. е. обязательно проверять растворимость реагентов и продуктов, отмечая это в уравнени- ях, а также таблицей констант диссоциации слабых электролитов (Прило- жение, табл. 1 и 2). Рассмотрим примеры записи некоторых ионно- молекулярных уравнений.

Пример 1. Образование трудно- и малорастворимых соединений (осадка).

а) Образование сульфата бария

Молекулярное уравнение реакции:

BaCl2 + Na2SO4 = BaSO4↓ + 2NaCl.

Полное ионное (ионно-молекулярное) уравнение реакции:

Ba2+ + 2Clˉ + 2Na+ + SO4 ˉ = BaSO4↓ + 2Na

CO 2–

CO2 + H2O (сокращенное ионное уравнение).

Пример 3. Образование слабого электролита.

2Na+ + 2OH– +2H+ + SO 2–

(полное ионное уравнение)

2OH– + 2H+ = 2H2O (сокращенное ионное уравнение).

Реакция нейтрализации сильной кислоты сильным основанием сводится к взаимодействию ионов водорода с гидроксид-ионами;

б) слабой кислоты:

2NaNO2 + H2SO4 = 2HNO2 + Na2SO4 (молекулярное уравнение)

NH +

(полное ионное уравнение)

NH4OH (сокращенное ионное уравнение).

Сильные основания вытесняют слабые основания из их солей.

Пример 4. Когда среди исходных соединений и продуктов реакции есть слабый электролит или малорастворимое вещество, то в уравнении применяет-

ся знак равновесия «⇄». Равновесие в реакции смещается в сторону более слабого электролита или малорастворимого вещества, что обозначается

значком (↷)..

а) CH3COOH + NaОН ⇄ CH3COONa + H2O

CH3COOН + ОНˉ ⇄ CH3COOˉ + H2O (↷).

В результате реакции образуется более слабый электролит – вода. Равнове-

сие смещается в сторону прямой реакции.

б) CaSO4↓ + Na2CO3 ⇄ CaCO3↓ + Na2SO4;

CaSO4↓ + 2 Na+ + CO 2–

⇄ CaCO3↓ + 2 Na+

В результате реакции образуется менее растворимая соль – карбонат каль-

ция. Равновесие смещается в сторону прямой реакции.

Пример 5. Составьте три возможных молекулярных уравнения реакции,

соответствующих сокращенному ионному уравнению: CH3COO– + H+ = CH3COOH.

Решение. В левой части ионного уравнения указаны свободные ионы СН3СОО– и Н+. Эти ионы образуются при диссоциации каких-либо раствори- мых сильных электролитов. Ионы СН3СОО– могут образовываться при диссо- циации, например солей КСН3СОО, NaCH3COO, Mg (CH3COO)2; донорами ио-

нов Н+ могут быть любые сильные кислоты. Молекулярные уравнения реакций,

которым отвечает данное молекулярно-ионное уравнение, могут быть:

1. KCH3COO + HCl = CH3COOH + KCl;

2. NaCH3COO + HNO3 = CH3COOH + NaNO3;

3. Mg(CH3COO)2 + H2SO4 = 2 CH3COOH + MgSO4.

Техника безопасности

1. Соблюдайте особую осторожность при работе с растворами кислот и щелочей, не допускайте их попадания на кожу и одежду.

2. Если в процессе эксперимента выделяется токсичный газообразный продукт, то обязательно проводите опыт в вытяжном шкафу при работаю- щей вентиляции.

3. Соблюдайте осторожность при работе с токсичными солями и их растворами (соли бария, хрома, меди и др.).

Электролитическая диссоциация - процесс распада электролита на ионы при его растворении или плавлении.

Классическая теория электролитической диссоциации была создана С. Аррениусом и В. Оствальдом в 1887 году. Аррениус придерживался физической теории растворов, не учитывал взаимодействие электролита с водой и считал, что в растворах находятся свободные ионы. Русские химики И. А. Каблукови В. А. Кистяковский применили для объяснения электролитической диссоциации химическую теорию растворов Д. И. Менделеева и доказали, что при растворении электролита происходит его химическое взаимодействие с водой, в результате которого электролит диссоциирует на ионы.

Классическая теория электролитической диссоциации основана на предположении о неполной диссоциации растворённого вещества, характеризуемой степенью диссоциации α, т. е. долей распавшихся молекул электролита. Динамическое равновесие между недиссоциированными молекулами и ионами описывается законом действующих масс.

Вещества, распадающиеся на ионы, называют электролитами. Электролиты – вещества с ионной или сильно ковалентной связью: кислоты, основания, соли. остальные вещества – неэлектролиты; к ним относятся вещества с неполярной или слабо полярной ковалентной связью; например, многие органические соединения.

Основные положения ТЭД (Теории электролитической диссоциации):

Молекулы распадаются на положительно и отрицательно заряженные ионы (простые и сложные).

Под действием электрического тока катионы (положительно заряженные ионы движутся к катоду(-), а анионы (отрицательно заряженные ионы) к аноду(+)

Степень диссоциации зависит от природы вещества и растворителя, концентрации, температуры.

Если степень диссоциации зависит от природы вещества, то можно судить, что существует разграничение между определёнными группами веществ.

Большая степень диссоциации присуща сильным электролитам (большинству оснований, солям, многим кислотам). Стоит учесть, что распад на ионы – обратимая реакция. Так же стоит сказать, что в данной теме не будут разобраны примеры диссоциации двойных и основных солей, их диссоциация описана в теме “соли”.
Примеры сильных электролитов:
NaOH, K 2 SO 4 , HClO 4
Уравнения диссоциации:
NaOH⇄Na + +OH -

K 2 SO 4 ⇄2K + +SO 4 2-

HClO 4 ⇄H + +ClO 4 -

Количественной характеристикой силы электролитов является степень диссоциации (α) – отношение молярной концентрации продиссоциировавшего электролита к его общей молярной концентрации в растворе.

Степень диссоциации выражается в долях единицы или в процентах. Интервал значений – от 0 до 100%.

α = 0% относится к неэлектролитам (диссоциация отсутствует)

0% <α < 100% относится к слабым электролитам (диссоциация неполная)
α = 100% относится к сильным электролитам (полная диссоциация)

Так же стоит помнить про количество ступеней диссоциации, например:
Диссоциация раствора H 2 SO 4

H 2 SO 4 ⇄H + +HSO 4 -

HSO 4 - ⇄H + +SO 4 2-

У каждой ступени диссоциации своя степень диссоциации.
Например, диссоциация солей CuCl 2 , HgCl 2:
CuCl 2 ⇄Cu 2+ +2Cl - диссоциация протекает полностью

А в случае с хлоридом ртути диссоциация идёт неполностью и то не до конца.

HgCl 2 ⇄HgCl + +Cl -

Возвращаясь же к раствору серной кислоты, стоит сказать, что степень диссоциации обеих ступеней разбавленной кислоты гораздо больше, чем у концентрированной. При диссоциации концентрированного раствора очень много молекул вещества и большая концентрация гидроанионов HSO 4 - .

У многоосновных кислот и многокислотных оснований диссоциация идёт в несколько ступеней (в зависимости от основности).

Перечислим сильные и слабые кислоты и приступим к уравнениям ионного обмена:
Сильные кислоты (HCl, HBr, HI, HClO 3 , HBrO 3 , HIO 3 , HClO 4 , H 2 SO 4 , H 2 SeO 4 ,HNO 3 , HMnO 4 , H 2 Cr 2 O 7)

Слабые кислоты (HF, H 2 S, H 2 Se, HClO, HBrO, H 2 SeO 3 , HNO 2 ,H 3 PO 4 , H 4 SiO 4 , HCN, H 2 CO 3 , CH 3 COOH)

Химические реакции в растворах и расплавах электролитов протекают с участием ионов. В таких реакциях степени окисления элементов не изменяются, и сами реакции называются реакциями ионного обмена .

Реакции ионного обмена будут протекать до конца (необратимо) , если образуются малорастворимые или практически нерастворимые вещества (они выпадают в осадок), летучие вещества (выделяются в виде газов) или слабые электролиты (например, вода).

Реакции ионного обмена принято писать в три стадии:
1. Молекулярное уравнение
2. Полное ионное уравнение
3. Сокращенное ионное уравнение
При написании обязательно указывать осадки и газы, а так же руководствоваться таблицей растворимости.

Реакции, где все реагенты и продукты получились растворимые в воде, не протекают.


Несколько примеров:
Na 2 CO 3 +H 2 SO 4 →Na 2 SO 4 +CO 2 +H 2 O

2Na + +CO 3 2- +2H + +SO 4 2- →2Na + +SO 4 2- +CO 2 +H 2 O

CO 3 2- +2H + →CO 2 +H 2 O

Сокращённое ионное уравнение получается с помощью вычёркивания одинаковых ионов из обеих частей полного ионного уравнения.

Если реакция ионного обмена идёт между двумя солями с образованием осадка, то следует брать два хорошо растворимых реагента. То есть, реакция ионного обмена пойдёт если растворимость реагентов будет выше, чем у одного из продуктов.

Ba(NO 3) 2 +Na 2 SO 4 →BaSO 4 ↓+2NaNO 3

Иногда при написании реакций ионного обмена пропускают полное ионное уравнение и сразу пишут сокращенное.

Ba 2+ +SO 4 2- →BaSO 4 ↓

Для получения осадка малорастворимого вещества всегда надо выбирать хорошо растворимые реагенты в их концентрированных растворах.
Например:
2KF+FeCl 2 →FeF 2 ↓+2KCl

Fe 2+ +2F - →FeF 2 ↓

Данные правила подбора реагентов для осаждения продуктов справедливы только для солей.

Примеры реакций с выпадением осадков:
1.Ba(OH) 2 +H 2 SO 4 →BaSO 4 ↓+2H 2 O

Ba 2+ +SO 4 2- →BaSO 4 ↓

2. AgNO 3 +KI→AgI↓+KNO 3

Ag + +I - →AgI↓

3.H 2 S+Pb(NO 3) 2 →PbS↓+2HNO 3

H 2 S+Pb 2+ →PbS↓+2H +

4. 2KOH+FeSO 4 →Fe(OH) 2 ↓+K 2 SO 4

Fe 2+ +2OH - →Fe(OH) 2 ↓

Примеры реакций с выделением газов:
1.CaCO 3 +2HNO 3 →Ca(NO 3) 2 +CO 2 +H 2 O

CaCO 3 +2H + →Ca 2+ +CO 2 +H 2 O

2. 2NH 4 Cl+Ca(OH) 2 →2NH 3 +CaCl 2 +2H 2 O

NH 4 + +OH - →NH 3 +H 2 O

3. ZnS+2HCl→H 2 S+ZnCl 2

ZnS+2H + →H 2 S+Zn 2+

Примеры реакций с образованием слабых электролитов:
1.Mg(CH 3 COO) 2 +H 2 SO 4 →MgSO 4 +2CH 3 COOH

CH 3 COO - +H + →CH 3 COOH

2. HI+NaOH→NaI+H 2 O

H + +OH - →H 2 O

Рассмотрим применение изученного материала на конкретных заданиях, встречающихся на экзаменах:
№1 .Среди веществ: NaCl, Na 2 S, Na 2 SO 4 – в реакцию с раствором Cu(NO3) 2 вступает(-ют)

1) толькоNa 2 S

2) NaCl и Na 2 S

3) Na 2 Sи Na 2 SO 4

4) NaCl и Na 2 SO 4

Под словом “вступают” подразумевается “протекает реакция”, а как было сказано выше, реакция протекает если образовалось нерастворимое или малорастворимое вещество, выделился газ или образовался слабый электролит (вода).

Разберём варианты по очереди.
1) Cu(NO 3) 2 +Na 2 S→CuS↓+2NaNO 3 образовался осадок.
2)NaCl+Cu(NO 3) 2 ↛CuCl 2 +2NaNO 3

Протекает только реакция с Na 2 S с образованием осадка

3)С Na 2 S так же будет образование осадка как и в первых двух примерах.
Na 2 SO 4 +Cu(NO 3) 2 ↛CuSO 4 +2NaNO 3

Все продукты являются хорошо растворимыми электролитами, это не газы, следовательно, реакция не протекает.

4) С Na 2 SO 4 реакция не протекает как в прошлом варианте ответа
NaCl+Cu(NO 3) 2 ↛CuCl 2 +2NaNO 3

Все продукты являются хорошо растворимыми электролитами, это не газы, следовательно, реакция не протекает.

Следовательно, подходит 1 вариант ответа.

№2 . Газ выделяется при взаимодействии

1) MgCl 2 и Ba(NO 3) 2

2) Na 2 CO 3 и CaCl 2

3) NH 4 ClиNaOH

4) CuSO 4 и KOH

Слово “газ” в таких заданиях обозначает именно газы и легколетучие соединения.

В заданиях в качестве таких соединений обычно встречаются NH 3 ·H 2 O, H 2 CO 3 (в нормальных условиях проведения реакции разлагается на CO 2 и H 2 O, принято не писать полную формулу угольной кислоты, а сразу расписывать на газ и воду), H 2 S.

Из представленных веществ выше мы не сможем получить H 2 S, потому что отсутствует сульфид-ион во всех веществах. Так же не сможем получить углекислый газ, ибо для его получения из соли нужно добавить кислоту, а в паре с карбонатом натрия находится другая соль.
Мы можем получить газ в 3 варианте ответа.
NH 4 Cl+NaOH→NH 3 +NaCl+H 2 O

Выделился газ с резким запахом.

Следовательно, подходит 3 вариант ответа.

№3 .В реакцию с соляной кислотой вступает

1) нитрат серебра

2) нитрат бария

3) серебро

4) оксид кремния

Среди реагентов есть два электролита, чтобы прошла реакция, нужно, чтоб выделился осадок.
С оксидом кремния соляная кислота не прореагирует, а серебро не вытеснит водород из соляной кислоты.
Ba(NO 3) 2 +2HCl→BaCl 2 +2HNO 3 реакция не будет протекать, так как все продукты – растворимые электролиты
AgNO 3 +HCl→AgCl↓+NaNO 3

Выпадет белый творожистый осадок нитрата серебра
Следовательно, подходит 1 вариант ответа.

Следующий пример задания, в отличие от первых трёх, взят из КИМа ЕГЭ 2017.
Первые три взяты из КИМа ОГЭ 2017

Установите соответствие между формулами веществ и реагентом, с помощью которого можно различить их водные растворы: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.
ФОРМУЛЫ ВЕЩЕСТВ РЕАГЕНТ
А) HNO 3 и H 2 O 1) CaCO 3
Б)KClи NaOH 2) KOH

В)NaClи BaCl 2 3) HCl

Г) AlCl 3 и MgCl 2 4) KNO 3

Чтобы выполнить это задание, следует сначала понять, что под каждой буквой указаны два вещества, которые находятся в одном растворе и нужно подобрать вещество так, чтоб хотя бы одно из них вступило в качественную реакцию с веществом-реагентом, который дан под цифрой.

К раствору азотной кислоты добавим карбонат кальция, углекислый газ станет признаком реакции:
2HNO 3 +CaCO 3 →Ca(NO 3) 2 +CO 2 +H 2 O
Ещё, по логике, карбонат кальция не растворяется в воде, значит, во всех остальных растворах тоже не растворится, следовательно, к признакам реакции можно добавить растворение карбоната кальция, помимо выделения газа.

Раствор под буквой Б можно было бы различить с помощью соляной кислоты под цифрой 3, но только в случае, если было бы разрешено воспользоваться индикатором (фенолфталеин), который бы обесцветился после реакции, ибо произойдёт нейтрализация щёлочи .

Поэтому, можем различитьв растворе OH - ион только при помощи 5 раствора (CuSO 4)
2NaOH+CuSO 4 →Cu(OH) 2 ↓+Na 2 SO 4

Образовались кристаллики голубого цвета на две раствора.

Раствор под буквой В можем различить так же с помощью реактива под номером 5, ибо сульфат-ионы, соединяясь с барием сразу выпадут в белый кристаллический осадок, который не растворим в избытке даже самых сильных кислот.
BaCl 2 +CuSO 4 →CuCl 2 +BaSO 4 ↓

Раствор под буквой Г нетрудно различить с помощью любой щелочи, т.к основания магния и алюминия при протекании реакции сразу выпадут в осадок. Щелочь представлена под цифрой 2

AlCl 3 +3KOH→Al(OH) 3 ↓+3KCl

MgCl 2 +2KOH→Mg(OH) 2 ↓+2KCl

Редактор: Харламова Галина Николаевна

Сокращённое ионное уравнение Н + + ОН − = H 2 O соответствует взаимодействию азотной кислоты с:

1) оксидом натрия

2) гидроксидом меди

3) гидроксидом натри

Ответ: 3

Пояснение:

Азотная кислота является сильной кислотой, следовательно, практически все ее молекулы диссоциируют на катионы H + и анионы NO 3 − . На гидроксид-ионы OH − диссоциируют сильные растворимые в воде основания, т.е. щелочи. Из всех вариантов ответов, представленных в задании, подходит гидроксид натрия, который в водном растворе распадается на Na + и OH − .

Полное ионное уравнение реакции NaOH и HNO 3: Na + + OH − + H + + NO 3 − = Na + + NO 3 − + H 2 O. Сократив слева и справа в уравнении одинаковые ионы, получим сокращенное ионной уравнение, представленное в задании. Данная реакция идет за счет образования малодиссоциирующего вещества – воды.

Оксид натрия не диссоциирует в воде, а реагирует с ней с образованием щелочи:

Na 2 O + H 2 O = 2 NaOH.

Гидроксид меди является нерастворимым основанием, поэтому в воде не диссоциирует.

Полное ионное уравнение Cu(OH) 2 + 2H + + 2NO 3 − = Cu 2+ + 2NO 3 − + 2H 2 O

Сокращенное ионное уравнение: Cu(OH) 2 + 2H + = Cu 2+ + 2H 2 O

Растворимая в воде соль KNO 3 при диссоциации не дает гидроксид-ионы. Являясь сильным электролитом, она распадается на катионы K + и анионы NO 3 −

Осадок выпадает при приливании серной кислоты к раствору, содержащему ионы:

1) NH 4 + и NO 3 −

2) K + и SiO 3 2−

Ответ: 2

Пояснение:

Серная кислота является сильным электролитом и в воде диссоциирует на ионы: H + и SO 4 2- . При взаимодействии катионов H + с анионами SiO 3 2− образуется не растворимая в воде кремниевая кислота H 2 SiO 3 .

Кислотный остаток серной кислоты SO 4 2- не образует осадков с предложенными катионами, как можно проверить по таблице растворимости кислот, оснований и солей в воде.

Катион H + , кроме как с SiO 3 2− , также не образует осадков с предложенными анионами.

Сокращённое ионное уравнение Cu 2+ + 2OH − = Cu(OH) 2 соответствует взаимодействию между:

1) CuSO 4 (p-p) и Fe(OH) 3

2) CuS и Ba(OH) 2 (p-p)

3) CuCl 2 (p-p) и NaOH (p-p)

Ответ: 3

Пояснение:

В первом случае реакция между сульфатом меди CuSO 4 и гидроксидом железа (III) Fe(OH) 3 не протекает, поскольку гидроксид железа является нерастворимым основанием и не диссоциирует в водном растворе.

Во втором случае реакция также не идет из-за нерастворимости сульфида меди CuS.

В третьем варианте реакция обмена между хлоридом меди (II) и NaOH протекает за счет выпадения осадка Cu(OH) 2 .

Уравнение реакции в молекулярном виде выглядит следующим образом:

CuCl 2 + 2NaOH = Cu(OH) 2 ↓ + 2NaCl.

Уравнение этой реакции в полном ионном виде:

Cu 2+ + 2Cl − + 2Na + + 2OH − = Cu(OH) 2 ↓ + 2Na + + 2Cl − .

Сократив одинаковые ионы Na + и Cl − в левой и правой частях полного ионного уравнения, получаем сокращенное ионное уравнение:

Cu 2+ + 2OH − = Cu(OH) 2 ↓

Оксид меди CuO (II), являясь оксидом переходного металла (IA группы) с водой не взаимодействует, так как не образует растворимого основания.

Взаимодействию растворов хлорида меди(II) и гидроксида калия соответствует сокращённое ионное уравнение:

1) Cl − + K + = KCl

2) CuCl 2 + 2OH − = Cu(OH) 2 + 2Cl −

3) Cu 2+ + 2KOH = Cu(OH) 2 + 2K +

Ответ: 4

Пояснение:

Реакция обмена между растворами хлорида меди (II) и гидроксида калия в молекулярном виде записывается следующим образом:

CuCl 2 + 2KOH = Cu(OH) 2 ↓ + 2KCl

Реакция проходит за счет выпадения голубого осадка Cu(OH) 2 .

CuCl 2 и KOH являются растворимыми соединениями, поэтому в растворе распадаются на ионы.

Запишем реакцию в полном ионном виде:

Cu 2+ + 2Cl − + 2K + + 2OH − = Cu(OH) 2 ↓ + 2Cl − + 2K +

Сокращаем одинаковые ионы 2Cl − и 2K +

слева и справа полного ионного уравнения и получаем сокращенное ионное уравнение:

Cu 2+ + 2OH − = Cu(OH) 2 ↓

KCl, CuCl 2 и KOH являются растворимыми веществами и в водном растворе диссоциируют на катионы и анионы практически нацело. В других предложенных вариантах ответов эти соединения фигурируют в недиссоциированном виде, поэтому варианты 1, 2 и 3 не являются верными.

Какое сокращённое ионное уравнение соответствует взаимодействию силиката натрия с азотной кислотой?

1) K + + NO 3 − = KNO 3

2) H + + NO 3 − = HNO 3

3) 2H + + SiO 3 2- = H 2 SiO 3

Ответ: 3

Пояснение:

Реакцию взаимодействия силиката натрия с азотной кислотой (реакция обмена) в молекулярном виде записывается следующим образом:

Na 2 SiO 3 + 2HNO 3 = H 2 SiO 3 ↓ + 2NaNO 3

Поскольку силикат натрия – растворимая соль, а азотная кислота является сильной, оба вещества в растворе диссоциируют на ионы. Запишем реакцию в полном ионном виде:

2Na + + SiO 3 2− + 2H + + 2NO 3 − = H 2 SiO 3 ↓ + 2Na + + 2NO 3 −

SiO 3 2- + 2H + = H 2 SiO 3 ↓

Остальные предложенные варианты не отражают признака реакции – выпадение осадка. Кроме того, в представленных вариантах ответа растворимые соли KNO 3 и K 2 SiO 3 и сильная кислота HNO 3 представлены в недиссоциированном виде, что, конечно, неверно, поскольку эти вещества сильные электролиты.

Сокращённое ионное уравнение Ba 2+ + SO 4 2− =BaSO 4 соответствует взаимодействию

1) Ba(NO 3) 2 и Na 2 SO 4

2) Ba(OH) 2 и CuSO 4

3) BaO и H 2 SO 4

Ответ: 1

Пояснение:

Реакцию взаимодействия нитрата бария с сульфатом натрия (реакция обмена) в молекулярном виде записывается следующим образом:

Ba(NO 3) 2 + Na 2 SO 4 = BaSO 4 ↓ + 2NaNO 3

Поскольку нитрат бария и сульфат натрия являются растворимыми солями, оба вещества в растворе диссоциируют на ионы. Запишем реакцию в полном ионном виде:

Ba 2+ + 2NO 3 − + 2Na + + SO 4 2− = BaSO 4 ↓ + 2Na + + 2NO 3 −

Сократив ионы Na + и NO 3 − в левой и правой частях уравнения, получим сокращенное ионное уравнение:

Ba 2+ + SO 4 2− = BaSO 4 ↓

Реакцию взаимодействия гидроксида бария с сульфатом меди (реакция обмена) в молекулярном виде записывается следующим образом:

Ba(OH) 2 + CuSO 4 = BaSO 4 ↓ + Cu(OH) 2 ↓

Образуются два осадка. Поскольку гидроксид бария и сульфат меди являются растворимыми веществами, то оба в растворе диссоциируют на ионы. Запишем реакцию в полном ионном виде:

Ba 2+ + 2OH − + Cu 2+ + SO 4 2− = BaSO 4 ↓ + Cu(OH) 2 ↓


Реакцию взаимодействия оксида бария с серной кислотой (реакция обмена) в молекулярном виде записывается следующим образом:

BaO + H 2 SO 4 = BaSO 4 ↓ + H 2 O

Поскольку BaO является оксидом, в воде не диссоциирует (BaO взаимодействует с водой с образованием щелочи), записываем формулу BaO в недиссоциированном виде. Серная кислота является сильной, поэтому в растворе диссоциирует на катионы H + и анионы SO 4 2− . Реакция протекает за счет выпадения осадка сульфата бария и образования малодиссоциирующего вещества. Запишем реакцию в полном ионном виде:

BaO + 2H + + SO 4 2− = BaSO 4 ↓ + 2H 2 O

Здесь тоже одинаковых ионов в левой и правой частях уравнения нет и невозможно ничего сократить, то сокращенное ионное уравнение выглядит так же, как и полное.
Реакцию взаимодействия карбоната бария с серной кислотой (реакция обмена) в молекулярном виде записывается следующим образом:

BaCO 3 + H 2 SO 4 = BaSO 4 ↓ + CO 2 + H 2 O

Реакция протекает за счет образования осадка, выделения газа и образования малодиссоциирующего соединения – воды. Поскольку BaCO 3 – это нерастворимая соль, следовательно, в растворе на ионы не распадается, то записываем формулу BaCO 3 в молекулярном виде. Серная кислота является сильной, поэтому в растворе диссоциирует на катионы H + и анионы SO 4 2− . Запишем реакцию в полном ионном виде:

BaCO 3 + 2H + + SO 4 2− = BaSO 4 ↓ + CO 2 + H 2 O

Полное ионное уравнение совпадает с сокращенным, поскольку одинаковых ионов в левой и правой частях уравнения нет.

Сокращённое ионное уравнение Ba 2+ + CO 3 2− = BaCO 3 соответствует взаимодействию

1) сульфата бария и карбоната калия

2) гидроксида бария и углекислого газа

3) хлорида бария и карбоната натрия

4) нитрата бария и углекислого газа

Ответ: 3

Пояснение:

Реакция между сульфатом бария BaSO 4 и карбонатом калия K 2 CO 3 не протекает, поскольку сульфат бария – нерастворимая соль. Необходимое условие реакции обмена двух солей – это растворимость обоих солей.

Реакция между гидроксидом бария Ba(OH) 2 и углекислым газом CO 2 (кислотным оксидом) протекает за счет образования нерастворимой соли BaCO 3 . Это реакция взаимодействия щелочи с кислотным оксидом с образованием соли и воды. Запишем реакцию в молекулярном виде:

Ba(OH) 2 + CO 2 = BaCO 3 ↓ + H 2 O

Поскольку гидроксид бария является растворимым основанием, в растворе он диссоциирует на катионы Ba 2+ и гидроксид-ионы OH − . Оксид углерода в воде не диссоциирует, поэтому в ионных уравнениях его формулу следует записывать в молекулярном виде. Карбонат бария является нерастворимой солью, поэтому в ионном уравнении реакции его также записываем в молекулярном виде. Таким образом, реакция взаимодействия гидроксида бария и углекислого газа в полном ионном виде выглядит следующим образом:

Ba 2+ + 2OH − + CO 2 = BaCO 3 ↓ + H 2 O

Поскольку одинаковых ионов в левой и правой частях уравнения нет и невозможно ничего сократить, то сокращенное ионное уравнение выглядит так же, как и полное.

Реакцию взаимодействия хлорида бария с карбонатом натрия (реакция обмена) в молекулярном виде записывается следующим образом:

BaCl 2 + Na 2 CO 3 = BaCO 3 ↓ + 2NaCl

Поскольку хлорид бария и карбонат натрия являются растворимыми солями, оба вещества в растворе диссоциируют на ионы. Запишем реакцию в полном ионном виде:

Ba 2+ + 2Cl − + 2Na + + CO 3 2- = BaCO 3 ↓ + 2Na + + 2Cl −

Сократив ионы Na + и Cl − в левой и правой частях уравнения, получим сокращенное ионное уравнение:

Ba 2+ + CO 3 2- = BaCO 3 ↓

Реакция между нитратом бария Ba(NO 3) 2 и углекислым газом CO 2 (кислотным оксидом) в водном растворе не протекает. Углекислый газ CO 2 в водном растворе образует слабую неустойчивую угольную кислоту H 2 CO 3 , которая не способна вытеснить сильную HNO 3 из раствора соли Ba(NO 3) 2 .


Готовые работы

ДИПЛОМНЫЕ РАБОТЫ

Многое уже позади и теперь ты - выпускник, если, конечно, вовремя напишешь дипломную работу. Но жизнь - такая штука, что только сейчас тебе становится понятно, что, перестав быть студентом, ты потеряешь все студенческие радости, многие из которых, ты так и не попробовал, всё откладывая и откладывая на потом. И теперь, вместо того, чтобы навёрстывать упущенное, ты корпишь над дипломной работой? Есть отличный выход: скачать нужную тебе дипломную работу с нашего сайта - и у тебя мигом появится масса свободного времени!
Дипломные работы успешно защищены в ведущих Университетах РК.
Стоимость работы от 20 000 тенге

КУРСОВЫЕ РАБОТЫ

Курсовой проект - это первая серьезная практическая работа. Именно с написания курсовой начинается подготовка к разработке дипломных проектов. Если студент научиться правильно излагать содержание темы в курсовом проекте и грамотно его оформлять, то в последующем у него не возникнет проблем ни с написанием отчетов, ни с составлением дипломных работ, ни с выполнением других практических заданий. Чтобы оказать помощь студентам в написании этого типа студенческой работы и разъяснить возникающие по ходу ее составления вопросы, собственно говоря, и был создан данный информационный раздел.
Стоимость работы от 2 500 тенге

МАГИСТЕРСКИЕ ДИССЕРТАЦИИ

В настоящее время в высших учебных заведениях Казахстана и стран СНГ очень распространена ступень высшего профессионального образования, которая следует после бакалавриата - магистратура. В магистратуре обучаются с целью получения диплома магистра, признаваемого в большинстве стран мира больше, чем диплом бакалавра, а также признаётся зарубежными работодателями. Итогом обучения в магистратуре является защита магистерской диссертации.
Мы предоставим Вам актуальный аналитический и текстовый материал, в стоимость включены 2 научные статьи и автореферат.
Стоимость работы от 35 000 тенге

ОТЧЕТЫ ПО ПРАКТИКЕ

После прохождения любого типа студенческой практики (учебной, производственной, преддипломной) требуется составить отчёт. Этот документ будет подтверждением практической работы студента и основой формирования оценки за практику. Обычно, чтобы составить отчёт по практике, требуется собрать и проанализировать информацию о предприятии, рассмотреть структуру и распорядок работы организации, в которой проходится практика, составить календарный план и описать свою практическую деятельность.
Мы поможет написать отчёт о прохождении практики с учетом специфики деятельности конкретного предприятия.