Error: не определено #11234. Окислительно восстановительные реакции 9. Окислительно-восстановительные реакции

Окислительно восстановительные реакции 9. Окислительно-восстановительные реакции

Урок в 9 классе по теме:

«ОКИСЛИТЕЛЬНО – ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ (ОВР)»

ТДЦ

Воспитывающая: создать условия для воспитания активности и самостоятельности при изучении данной темы, а также умения работать в группе, умения слушать своих одноклассников.

Развивающая: продолжить развитие логического мышления, умений наблюдать, анализировать и сравнивать, находить причинно-следственные связи, делать выводы, работать с алгоритмами, формировать интерес к предмету.

Обучающая :

  1. закрепить понятия “степень окисления”, процессы “окисления”, “восстановления”;
  2. закрепить навыки в составлении уравнений окислительно-восстановительных реакций методом электронного баланса;
  3. научить прогнозировать продукты окислительно-восстановительных реакций.

ХОД УРОКА:

  1. Организационный момент.
  2. Актуализация знаний.
  1. Какие правила определения степени атомов химических элементов вы знаете? (слайд 1)
  2. Выполните задание (слайд 2)
  3. Выполните самопроверку (слайд 3)
  1. Изучение нового материала.
  1. Выполните задание (слайд 4)

Определите, что происходит со степенью окисления серы при следующих переходах:

А) H 2 S → SO 2 → SO 3

Б) SO 2 → H 2 SO 3 → Na 2 SO 3

Какой можно сделать вывод после выполнения второй генетической цепочки?

На какие группы можно классифицировать химические реакции по изменения степени окисления атомов химических элементов?

  1. Проверяем (слайд 5).
  1. Делаем вывод: По изменению степени окисления атомов химических элементов, участвующих в химической реакции различают реакций – с изменением СО и без изменения СО.
  1. Итак, обозначим тему урока ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ (ОВР).
  1. Записываем определение

ОВР – реакции, которые протекают с изменением степени окисления атомов,

Входящих в состав реагирующих веществ

  1. Попробуем разобраться – в чём особенность процессов окисления и восстановления элементов при образовании ионной связи, на примере молекулы фторида натрия?

Внимательно рассмотрите схему и ответьте на вопросы:

  1. Что можно сказать о завершённости внешнего уровня атомов фтора и натрия?
  1. Какому атому легче принять, а какому легче отдать валентные электроны с целью завершения внешнего уровня?
  1. Как можно сформулировать определение окисления и восстановления?

Атому натрия до завершения своего внешнего уровня легче отдать один электрон (чем принимать 7 ē до восьми, т.е. до завершения) , поэтому он отдаёт свой валентный электрон атому фтора и помогает ему завершить его внешний уровень, при этом, он – восстановитель, окисляется и повышает свою СО. Атому фтора, как более электроотрицательному элементу легче принять 1 электрон для завершения своего внешнего уровня, он забирает электрон натрия, при этом восстанавливается, понижает свою СО и является окислителем.

«Окислитель как отъявленный злодей

Как пират, бандит, агрессор, Бармалей

Отнимает электроны - и ОК!

Потерпев урон, восстановитель

Восклицает: «Вот я, помогите!

Электроны мне мои верните!»

Но никто не помогает и ущерб

Не возмещает…»

  1. Записываем определения

Процесс отдачи электронов атомом, называется окислением.

Атом, отдающий электроны и повышающий свою степень окисления, окисляется и называется восстановителем.

Процесс принятия электронов атомом, называется восстановлением.

Атом, принимающий электроны и понижающий свою степень окисления, восстанавливается и называется окислителем.

  1. РАССТАНОВКА КОЭФФИЦИЕНТОВ В ОВР МЕТОДОМ ЭЛЕКТРОННОГО БАЛАНСА

Многие химические реакции уравниваются простым подбором коэффициентов.

Но в уравнениях окислительно-восстановительных реакций иногда возникают сложности. Для расстановки коэффициентов используют метод электронного баланса.

Предлагаю вам просмотреть АНИМАЦИЮ

Изучите алгоритм составления уравнений ОВР методом электронного баланса (приложение 1).

  1. Закрепление

Расставьте коэффициенты в УХР

Al 2 O 3 +H 2 =H 2 O+Al методом электронного баланса, укажите процессы окисления (восстановления), окислитель (восстановитель), выполните самопроверку.

  1. Рефлексия

Ответьте на вопросы в таблице «Вопросы к ученику» (приложение 2).

  1. Подведение итогов урока. ДЗ
  1. Комментированное выставление оценок.
  2. Домашнее задание: выполните тест с самопроверкой (приложение 3)

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Окислительно-восстановительные реакции (ОВР)

Правила вычисления степени окисления (СО) элементов:

Определите степени окисления атомов химических элементов по формулам их соединений: H 2 S, O 2 , NH 3 , HNO 3 , Fe, K 2 Cr 2 O 7 Выполните задание

1 -2 0 -3 +1 +1 +5 -2 H 2 S O 2 NH 3 HNO 3 0 +1 +7 -2 Fe K 2 Cr 2 O 7 Выполните самопроверку

Определите, что происходит со степенью окисления серы при следующих переходах: А) H 2 S → SO 2 → SO 3 Б) SO 2 → H 2 SO 3 → Na 2 SO 3 Какой можно сделать вывод после выполнения второй генетической цепочки? На какие группы можно классифицировать химические реакции по изменения степени окисления атомов химических элементов? Выполните задание

А) H 2 S -2 → S +4 O 2 → S +6 O 3 Б) S +4 O 2 → H 2 S +4 O 3 → Na 2 S +4 O 3 В первой цепочке превращений сера повышает свою СО от (-2) до (+6). Во второй цепочке степень окисления серы не меняется. Проверяем

Окислительно-восстановительные реакции (ОВР) – реакции, которые протекают с изменением степени окисления атомов, входящих в состав реагирующих Запишем определение

Образование ионной связи, на примере молекулы фторида натрия

Что можно сказать о завершённости внешнего уровня атомов фтора и натрия? Какому атому легче принять, а какому легче отдать валентные электроны с целью завершения внешнего уровня? Как можно сформулировать определение окисления и восстановления? Ответьте на вопросы

Окисление – процесс отдачи электронов атомом. Окислитель – атом, принимающий электроны и понижающий свою степень окисления, в процессе реакции – восстанавливается. Восстановитель – атом, отдающий электроны и повышающий свою степень окисления, в процессе реакции – окисляется. Восстановление – процесс принятия электронов атомом. Запишем определения

1. Посмотрите анимацию. 2. Изучите алгоритм составления уравнений ОВР методом электронного баланса (в папке). РАССТАНОВКА КОЭФФИЦИЕНТОВ В ОВР МЕТОДОМ ЭЛЕКТРОННОГО БАЛАНСА

Расставьте коэффициенты в УХР Al 2 O 3 + H 2 = H 2 O + Al методом электронного баланса, укажите процессы окисления (восстановления), окислитель (восстановитель), выполните самопроверку. Закрепление

Ответьте на вопросы в таблице «Вопросы к ученику». Рефлексия

Предварительный просмотр:

Приложение 2

Вопросы к ученику

Дата___________________Класс______________________

Постарайся точно вспомнить то, что слышал на уроке и ответь на поставленные вопросы:

№ п/п

Вопросы

Ответы

Какова была тема урока?

Какая цель стояла перед тобой на уроке?

Как работали на уроке твои одноклассники?

Как работал ты на уроке?

Сегодня я узнал…

Я удивился…

Теперь я умею…

Я хотел бы…

Предварительный просмотр:

Приложение 3

Тест по теме «ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ»

Часть «А» - выберите один вариант ответа из предложенных

1. Окислительно-восстановительными реакциями называются

А) Реакции, которые протекают с изменением степени окисления атомов, входящих в состав реагирующих веществ;

Б) Реакции, которые протекают без изменения степени окисления атомов, входящих в состав реагирующих веществ;

В) Реакции между сложными веществами, которые обмениваются своими составными частями

2. Окислитель – это …

А) Атом, который отдаёт электроны и понижает свою степень окисления;

Б) Атом, который принимает электроны и понижает свою степень окисления;

В) Атом, который принимает электроны и повышает свою степень окисления;

Г) Атом, который отдаёт электроны и повышает свою степень окисления

3. Процесс восстановления – это процесс…

А) Отдачи электронов;

Б) Принятия электронов;

В) Повышения степени окисления атома

4. Данное вещество является только окислителем

А) H 2 S; Б) H 2 SO 4 ; В) Na 2 SO 3 ; Г) SO 2

5. Данное вещество является только восстановителем

А) NH 3 ; Б) HNO 3 ; В) NO 2 ; Г) HNO 2

Часть «Б» - установите соответствие (Например, А – 2)

1. Установите соответствие между полуреакцией и названием процесса

2. Установите соответствие между уравнением химической реакции и её типом

А) 2H 2 +O 2 =2H 2 O

1) Разложения, ОВР

Б) 2CuO=2Cu+O 2

2) Соединения, не ОВР

В) Na 2 O+2HCl=2NaCl+H 2 O

3) Обмена, не ОВР

Г) 4HNO 3 =4NO 2 +2H 2 O+O 2

4) Соединения, ОВР

3. Установите соответствие между атомом фосфора в формуле вещества и его окислительно-восстановительными свойствами, которые он может проявлять

Часть «С» - решите задание

Из предложенных реакций выберите только ОВР, определите степени окисления атомов, укажите окислитель, восстановитель, процессы окисления и восстановления, расставьте коэффициенты методом электронного баланса:

NaOH + HCl = NaCl + H 2 O

Fe(OH) 3 = Fe 2 O 3 +H 2 O

Na + H 2 SO 4 = Na 2 SO 4 +H 2

Реакции, в ходе которых элементы, входящие в состав реагирующих веществ, изменяют степень окисления, называются окислительно – восстановительными (ОВР).

Степень окисления. Для характеристики состояния элементов в соединениях введено понятие степени окисления. Степень окисления (с.о.) – это условный заряд, который приписывается атому в предположении, что все связи в молекуле или ионе предельно поляризованы. Степень окисления элемента в составе молекулы вещества или иона определяется как число электронов, смещенных от атома данного элемента (положительная степень окисления) или к атому данного элемента (отрицательная степень окисления). Для вычисления степени окисления элемента в соединении следует исходить из следующих положений (правил):

1. Степень окисления элементов в простых веществах, в металлах в элементном состоянии, в соединениях с неполярными связями равны нулю. Примерами таких соединений являютсяN 2 0 , Н 2 0 , Сl 2 0 ,I 2 0 , Мg 0 ,Fe 0 и т.д.

2. В сложных веществах отрицательную степень окисления имеют элементы с большей электроотрицательностью.

Поскольку при образовании химической связи электроны смещаются к атомам более электроотрицательных элементов, то последние имеют в соединениях отрицательную степень окисления.

О -2 ClО -2 Н + Элемент ЭО

В некоторых случаях степень окисления элемента численно совпадает с валентностью (В) элемента в данном соединении, как, например, в НClО 4 .

Приведенные ниже примеры показывают, что степень окисления и валентность элемента могут численно различаться:

N ≡ N В (N)=3; с.о.(N)=0

Н + C -2 О -2 Н +

ЭО (C) = 2,5 В(С) = 4 с.о.(С) = -2

ЭО (О) = 3,5 В(О) = 2 с.о.(О) = -2

ЭО (Н) = 2,1 В(Н) = 1 с.о.(Н) = +1

3. Различают высшую, низшую и промежуточные степени окисления.

Высшая степень окисления – это ее наибольшее положительное значение. Высшая степень окисления, как правило, равна номеру группы (N) периодической системы, в которой элемент находится. Например, для элементов III периода она равна: Na +2 , Mg +2 , AI +3 , Si +4 , P +5 , S +6 , CI +7 . Исключение составляют фтор, кислород, гелий, неон, аргон, а также элементы подгруппы кобальта и никеля: их высшая степень окисления выражается числом, значение которого ниже, чем номер группы, к которой они относятся. У элементов подгруппы меди, наоборот, высшая степень окисления больше единицы, хотя они и относятся к I группе.

Низшая степень окисления определяется количеством электронов, не достающих до устойчивого состояния атома ns 2 nр 6 . Низшая степень окисления для неметаллов равна (N-8), где N – номер группы периодической системы, в которой элемент находится. Например, для неметаллов III периода она равна: Si -4 , P -3 , S -2 ,CI ˉ. Низшая степень окисления для металлов – это наименьшее ее положительное значение из возможных. Например, марганец имеет следующие степени окисления: Mn +2 , Mn +4 , Mn +6 , Mn +7 ; с.о.=+2 – это низшая степень окисления для марганца.

Все остальные встречающиеся степени окисления элемента называют промежуточными. Например, для серы степень окисления, равная +4, является промежуточной.

4. Ряд элементов проявляют в сложных соединениях постоянную степень окисления:

а) щелочные металлы – (+1);

б) металлы второй группы обеих подгрупп (за исключением Нg) – (+2); ртуть может проявлять степени окисления (+1) и (+2);

в) металлы третьей группы, главной подгруппы – (+3), за исключением Tl, который может проявлять степени окисления (+1) и (+3);

д) H + , кроме гидридов металлов (NaH, CaH 2 и т.д.), где его степень окисления равна (-1);

е) О -2 , за исключением пероксидов элементов (Н 2 О 2 , СаО 2 и т.д.), где степень окисления кислорода равна (-1), надпероксидов элементов

(КО 2 , NaO 2 и т.д.), в которых его степень окисления равна – ½, фторида

кислорода ОF 2 .

5. Большинство элементов могут проявлять разную степень окисления в соединениях. При определении их степени окисления пользуются правилом, согласно которому сумма степеней окисления элементов в электронейтральных молекулах равна нулю, а в сложных ионах – заряду этих ионов.

В качестве примера вычислим степень окисления фосфора в ортофосфорной кислоте Н 3 РО 4 . Сумма всех степеней окисления в соединении должна быть равна нулю, поэтому обозначим степень окисления фосфора через Х и, умножив известные степени окисления водорода (+1) и кислорода (-2) на число их атомов в соединении, составим уравнение: (+1)*3+Х+(-2)*4 = 0, из которого Х = +5.

Вычислим степень окисления хрома в дихромат – ионе (Cr 2 О 7) 2- .

Сумма всех степеней окисления в сложном ионе должна быть равна (-2), поэтому обозначим степень окисления хрома через Х, составим уравнение 2Х +(-2)*7 = -2, из которого Х = +6.

Понятие степени окисления для большинства соединений имеет условный характер, т.к. не отражает реальный эффективный заряд атома. В простых ионных соединениях степень окисления входящих в них элементов равна электрическому заряду, поскольку при образовании этих соединений происходит практически полный переход электронов от одного

1 -1 +2 -1 +3 -1

атома к другому: NaI ,MgCI 2 , AIF 3 . Для соединения с полярной ковалентной связью фактический эффективный заряд меньше степени окисления, однако это понятие весьма широко используется в химии.

Основные положения теории ОВР:

1. Окислением называют процесс отдачи электронов атомом, молекулой или ионом. Частицы, отдающие электроны, называют восстановителями; во время реакции они окисляются, образуя продукт окисления. При этом элементы, участвующие в окислении, повышают свою степень окисления. Например:

AI – 3e -  AI 3+

H 2 – 2e -  2H +

Fe 2+ - e -  Fe 3+

2. Восстановлением называют процесс присоединения электронов атомом, молекулой или ионом. Частицы, присоединяющие электроны, называютокислителями; во время реакции они восстанавливаются, образуя продукт восстановления. При этом элементы, участвующие в восстановлении, понижают свою степень окисления. Например:

S + 2e -  S 2-

CI 2 + 2e -  2 CI ˉ

Fe 3+ + e -  Fe 2+

3.Вещества, содержащие частицы восстановители или окислители, соответственно называют восстановителями или окислителями. Например, FeCI 2 является восстановителем за счет Fe 2+ , а FeCI 3 - окислителем за счет Fe 3+ .

4. Окисление всегда сопровождается восстановлением и, наоборот, восстановление всегда связано с окислением. Таким образом ОВР представляют собой единство двух противоположенных процессов – окисления и восстановления

5. Число электронов, отданных восстановителем, равно числу электронов, принятых окислителем.

Составление уравнений окислительно-восстановительных реакций. На последнем правиле базируются два метода составления уравнений для ОВР:

1. Метод электронного баланса.

Здесь подсчет числа присоединяемых и теряемых электронов производится на основании значений степеней окисления элементов до и после реакции. Обратимся к простейшему примеру:

Na 0 + Cl  Na + Cl

2Na 0 – eˉ  Na + - окисление

1 Cl 2 + 2eˉ  2 Cl - восстановление

2 Na + Cl 2 = 2Na + + 2Cl

2 Na + Cl 2 = 2NaCl

Данный метод используют в том случае, если реакция протекает не в растворе (в газовой фазе, реакции термического разложения и т.д.).

2. Метод ионно-электронный (метод полуреакций).

Данный метод учитывает среду раствора, дает представление о характере частиц реально существующих и взаимодействующих в растворах. Остановимся на нем более подробно.

Алгоритм подбора коэффициентов ионно-электронным методом:

1. Составить молекулярную схему реакции с указанием исходных веществ и продуктов реакции.

2. Составить полную ионно-молекулярную схему реакции, записывая слабые электролиты, малорастворимые, нерастворимые и газообразные вещества в молекулярном виде, а сильные электролиты – в ионном.

3. Исключив из ионно-молекулярной схемы ионы, не изменяющиеся в результате реакции (без учета их количества), переписать схему в кратком ионно-молекулярном виде.

4. Отметить элементы, изменяющие в результате реакции степень окисления; найти окислитель, восстановитель, продукты восстановления, окисления.

5. Составить схемы полуреакций окисления и восстановления, для этого:

а) указать восстановитель и продукт окисления, окислитель и продукт восстановления;

б) уравнять число атомов каждого элемента в левой и правой частях полуреакций (выполнить баланс по элементам) в последовательности: элемент, изменяющий степень окисления, кислород, другие элементы; при этом следует помнить, что в водных растворах в реакциях могут участвовать молекулы Н 2 О, ионы Н + или ОН – в зависимости от характера среды:

в) уравнять суммарное число зарядов в обеих частях полуреакций; для этого прибавить или отнять в левой части полуреакций необходимое число электронов (баланс по зарядам).

6. Найти наименьшее общее кратное (НОК) для числа отданных и полученных электронов.

7. Найти основные коэффициенты при каждой полуреакции. Для этого полученное в п.6 число (НОК) разделить на число электронов, фигурирующих в данной полуреакции.

8. Умножить полуреакции на полученные основные коэффициенты, сложить их между собой: левую часть с левой, правую – с правой (получить ионно-молекулярное уравнение реакции). При необходимости “привести подобные” ионы с учетом взаимодействия между ионами водорода и гидроксид-ионами: H + +OH ˉ= H 2 O.

9. Расставить коэффициенты в молекулярном уравнении реакции.

10. Провести проверку по частицам, не участвующим в ОВР, исключенным из полной ионно-молекулярной схемы (п.3). При необходимости коэффициенты для них находят подбором.

11. Провести окончательную проверку по кислороду.

1. Кислая среда.

Молекулярная схема реакции:

KMnO 4 + NaNO 2 + H 2 SO 4  MnSO 4 + NaNO 3 + H 2 O + K 2 SO 4

Полная ионно-молекулярная схема реакции:

K + +MnO+ Na + +NO+2H + + SO Mn 2+ + SO+ Na + + NO+ H 2 O + 2K + +SO.

Краткая ионно-молекулярная схема реакции:

MnO+NO+2H +  Mn 2+ + NO+ H 2 O

ок-ль в-ль продукт в-ния продукт ок-ия

В ходе реакции степень окисления Mn понижается от +7 до +2 (марганец восстанавливается), следовательно, MnО– окислитель;Mn 2+ - продукт восстановления. Степень окисления азота повышается от +3 до +5 (азот окисляется), следовательно, NO– восстановитель, NO – продукт окисления.

Уравнения полуреакций:

2MnO + 8 H + + 5e - Mn 2+ + 4 H 2 O - процесс восстановления

10 +7 +(-5) = +2

5 NO + H 2 O – 2e - NO + 2 H + - процесс окисления

2MnO+ 16H + + 5NO+ 5H 2 O = 2Mn 2+ +8H 2 O + 5NO + 1OH + (полное ионно-молекулярное уравнение).

В суммарном уравнении исключаем число одинаковых частиц, находящихся как в левой, так и в правой частях равенства (приводим подобные). В данном случае это ионы Н + и Н 2 О.

Краткое ионно-молекулярное уравнение будет иметь вид

2MnO + 6H + + 5NO  2Mn 2+ + 3H 2 O + 5NO.

В молекулярной форме уравнение имеет вид

2KMnO 4 + 5 NaNO 2 + 3 H 2 SO 4 = 2MnSO 4 +5NaNO 3 + 3H 2 O + K 2 SO 4 .

Проверим баланс по частицам, которые не участвовали в ОВР:

K + (2 = 2), Na + (5 = 5), SO(3 = 3). Баланс по кислороду: 30 = 30.

2. Нейтральная среда.

Молекулярная схема реакции:

KMnO 4 + NaNO 2 + H 2 O  MnO 2 + NaNO 3 + KOH

Ионно-молекулярная схема реакции:

K + + MnO+ Na + + NO+ H 2 O  MnO 2 + Na + + NO+ K + + OH

Краткая ионно-молекулярная схема:

MnO+ NO+ H 2 O  MnO 2 + NO+ OH -

ок-ль в-ль продукт в-ния продукт ок-ия

Уравнения полуреакций:

2MnO+ 2H 2 O+ 3eˉ MnO 2 +4OH-процесс восстановления

6 -1 +(-3) = -4

3 NO+H 2 O– 2eˉ NO+ 2H + - процесс окисления

Окислительно-восстановительные реакции (ОВР) - реакции, сопровождающиеся присоединением или отдачей электронов, или перераспределением электронной плотности на атомах (изменение степени окисления).

Стадии ОВР

Окисление - отдача электронов атомами, молекулами или ионами. В результате степень окисления повышается. Восстановители отдают электроны.

Восстановление - присоединение электронов. В результате степень окисления понижается. Окислители принимают электроны.

ОВР - сопряженный процесс: если есть восстановление, то есть и окисление.

Правила ОВР

Эквивалентный обмен электронов и атомный баланс.

Кислая среда

В кислой среде высвобождающиеся оксид-ионы связываются с протонами в молекулы воды; недостающие оксид-ионы поставляются молекулами воды, тогда из них высвобождаются протоны.

Там, где не хватает атомов кислорода, пишем столько молекул воды, сколько не хватает оксид-ионов.

Сера в сульфите калия имеет степень окисления +4, марганец в перманганате калия имеет степень окисления +7, серная кислота - среда протекания реакции.
Мараганец в высшей степени окисления - окислитель, следовательно, сульфит калия восстановитель.

Примечание: +4 - промежуточная степень окисления для серы, поэтому она может выступать как восстановителем, так и окислителем. С сильными окислителями (перманганат, дихромат) сульфит является восстановителем (окисляется до сульфата), с сильными восстановителями (галогенидами, халькогенидами) сульфит окислитель (восстанавливается до серы или сульфида).

Сера из степени окисления +4 переходит в +6 - сульфит окисляется до сульфата. Марганец из степени окисления +7 переходит в +2 (кислая среда) - перманганат ион восстанавливается до Mn 2+ .

2. Составляем полуреакции. Уравниваем марганец: Из перманганата высвобождаются 4 оксид-иона, которые связываются ионами водорода (кислая среда) в молекулы воды. Таким образом, 4 оксид-иона связываются с 8 протонами в 4 молекулы воды.

Другими словами, в правой части уравнения не хватает 4 кислорода, поэтому пишем 4 молекулы воды, в левой части уравнения - 8 протонов.

Семь минус два - плюс пять электронов. Можно уравнивать по общему заряду: в левой части уравнения восемь протонов минус один перманганат = 7+, в правой части марганец с зарядом 2+, вода электронейтральна. Семь минус два - плюс пять электронов. Все уравнено.

Уравниваем серу: недостающий оксид-ион в левой части уравнения поставляется молекулой воды, из которой впоследствии высвобожается два протона в правую часть.
Слева заряд 2-, справа 0 (-2+2). Минус два электрона.

Умножаем верхнюю полуреакцию на 2, нижнюю на 5.

Сокращаем протоноы и воду.

Сульфат ионы связываются с ионами калия и марганца.

Щелочная среда

В щелочной среде высвобождающиеся оксид-ионы связываются молекулами воды, образуя гидроксид-ионы (OH - группы). Недостающие оксид-ионы поставляются гидроксо-группами, которых надо брать в два раза больше.

Там, где не хватает оксид-ионов пишем гидроксо-групп в 2 раза больше, чем не хватает, с другой стороны - воду .

Пример. Используя метод электронного баланса, составить уравнение реакции, определить окислитель и восстановитель:

Определяем степень окисления:

Висмут (III) с сильными окислителями (например, Cl 2) в щелочной среде проявляет восстановительные свойства (окисляется до висмута V):

Так как в левой части уравнения не хватает 3 кислородов для баланса, то пишем 6 гидроксо-групп, а справа - 3 воды.

Итоговое уравнение реакции:

Нейтральная среда

В нейтральной среде высвобождающиеся оксид-ионы связываются молекулами воды с образованием гидроксид-ионов (OH - групп). Недостающие оксид-ионы поставляются молекулами воды. Из них высвобождаются ионы H + .

Используя метод электронного баланса, составить уравнение реакции, определить окислитель и восстановитель:

1. Определяем степень окисления: сера в персульфате калия имеет степень окисления +7 (является окислителем, т.к. высшая степень окисления), бром в бромиде калия имеет степень окисления -1 (является восстановителем, т.к. низшая степень окисления), вода - среда протекания реакции.

Сера из степени окисления +7 переходит в +6 - персульфат восстанавливается до сульфата. Бром из степени окисления -1 переходит в 0 - бромид ион окисляется до брома.

2. Составляем полуреакции. Уравниваем серу (коэффициент 2 перед сульфатом). Кислород уравнен.
В левой части заряд 2-, в правой части заряд 4-, присоединено 2 электрона, значит пишем +2

Уравниваем бром (коэффициент 2 перед бромид-ионом). В левой части заряд 2-, в правой части заряд 0, отдано 2 электрона, значит пишем -2

3. Суммарное уравнение электронного баланса.

4. Итоговое уравнение реакции: Сульфат ионы связываются с ионами калия в сульфат калия, коэффициент 2 перед KBr и перед K 2 SO 4 . Вода оказалась не нужна - заключаем в квадратные скобки.

Классификация ОВР

  1. Окислитель и восстановитель - разные вещества
  2. Самоокислители, самовосстановители (диспропорционирование, дисмутация) . Элемент в промежуточной степени окисления.
  3. Окислитель или восстановитель - среда для прохождения процесса
  4. Внутримолекулярное окисление-восстановление . В состав одного и того же вещества входят окислитель и восстановитель.
    Твердофазные, высокотемпературные реакции.

Количесвеннная характеристика ОВР

Стандартный окислительно-восстановительный потенциал, E 0 - электродный потенциал относительно стандартного водородного потенциала. Больше об .

Для прохождения ОВР необходимо, чтобы разность потенциалов была больше нуля, то есть потенциал окислителя должен быть больше потенциала восстановителя:

,

Например:

Чем ниже потенциал, тем сильнее восстановитель; чем выше потенциал, тем сильнее окислитель.
Окислительные свойства сильнее в кислой среде, восстановительные - в щелочной.

Что ответить человеку, которого интересует, как решать окислительно-восстановительные реакции? Они нерешаемы. Впрочем, как и любые другие. Химики вообще не решают ни реакции, ни их уравнения. Для окислительно-восстановительной реакции (ОВР) можно составить уравнение и расставить в нём коэффициенты. Рассмотрим, как это сделать.

Окислитель и восстановитель

Окислительно-восстановительной называют такую реакцию, в ходе которой изменяются степени окисления реагирующих веществ. Это происходит потому, что одна из частиц отдаёт свои электроны (её называют восстановителем), а другая – принимает их (окислитель).

Восстановитель, теряя электроны, окисляется, то есть повышает значение степени окисления. Например, запись: означает, что цинк отдал 2 электрона, то есть окислился. Он восстановитель. Степень окисления его, как видно из приведённого примера, повысилась. – здесь сера принимает электроны, то есть восстанавливается. Она окислитель. Степень окисления ее понизилась.

У кого-то может возникнуть вопрос, почему при добавлении электронов степень окисления понижается, а при их потере, напротив, повышается? Всё логично. Элеrтрон – частица с зарядом -1, поэтому с математической точки зрения запись следует читать так: 0 – (-1) = +1, где (-1) – и есть электрон. Тогда означает: 0 + (-2) = -2, где (-2) – это и есть те два электрона, которые принял атом серы.

Теперь рассмотрим реакцию, в которой происходят оба процесса:

Натрий взаимодействует с серой с образованием сульфида натрия. Атомы натрия окисляются, отдавая по одному электрону, серы – восстанавливаются, присоединяя по два. Однако такое может быть только на бумаге. На самом же деле, окислитель должен присоединить к себе ровно столько электронов, сколько их отдал восстановитель. В природе соблюдается баланс во всем, в том числе и в окислительно-восстановительных процессах. Покажем электронный баланс для данной реакции:

Общее кратное между количеством отданных и принятых электронов равно 2. Разделив его на число электронов, которые отдает натрий (2:1=1) и сера (2:2=1) получим коэффициенты в данном уравнении. То есть в правой и в левой частях уравнения атомов серы должно быть по одному (величина, которая получилась в результате деления общего кратного на число принятых серой электронов), а атомов натрия – по два. В записанной схеме же слева пока только один атом натрия. Удвоим его, поставив коэффициент 2 перед формулой натрия. В правой части атомов натрия уже содержится 2 (Na2S).

Мы составили уравнение простейшей окислительно-восстановительной реакции и расставили в нем коэффициенты методом электронного баланса.

Рассмотрим, как “решать” оислительно-восстановительные реакции посложнее. Например, при взаимодействии концентрированной серной кислоты с тем же натрием образуются сероводород, сульфат натрия и вода. Запишем схему:

Определим степени окисления атомов всех элементов:

Изменили ст.о. только натрий и сера. Запишем полуреакции окисления и восстановления:

Найдём наименьшее общее кратное между 1 (столько электронов отдал натрий) и 8 (количество принятых серой отрицательных зарядов), разделим его на 1, затем на 8. Результаты – это и есть количество атомов Na и S как справа, так и слева.

Запишем их в уравнение:

Перед формулой серной кислоты коэффициенты из баланса пока не ставим. Считаем другие металлы, если они есть, затем – кислотные остатки, потом Н, и в самую последнюю очередь проверку делаем по кислороду.

В данном уравнении атомов натрия справа и слева должно быть по 8. Остатки серной кислоты используются два раза. Из них 4 становятся солеобразователями (входят в состав Na2SO4)и один превращается в H2S,то есть всего должно быть израсходовано 5 атомов серы. Ставим 5 перед формулой серной кислоты.

Проверяем H: атомов H в левой части 5×2=10, в правой – только 4, значит перед водой ставим коэффициент 4 (перед сероводородом его ставить нельзя, так как из баланса следует, что молекул H2S должно быть по 1 справа и слева. Проверку делаем по кислороду. Слева 20 атомов О, справа их 4×4 из серной кислоты и еще 4 из воды. Все сходится, значит действия выполнены правильно.

Это один вид действий, которые мог иметь в виду тот, кто спрашивал, как решать окислительно-восстановительные реакции. Если же под этим вопросом подразумевалось “закончите уравнение ОВР” или ” допишите продукты реакции “, то для выполнения такого задания мало уметь составлять электронный баланс. В некоторых случаях нужно знать, каковы продукты окисления/восстановления, как на них влияет кислотность среды и различные факторы, о которых пойдет речь в других статьях.

Окислительно-восстановительные реакции – видео

Конспект урока по химии в 9 классе: «Окислительно-восстановительные реакции»

Цель урока:

Рассмотреть сущность ОВР, повторить основные понятия о степени окисления, об окислении и восстановлении.

Оборудование и реактивы: Набор пробирок, растворы: CuSO4 , H2SO4, NaOH, H2O, Na2SO3.

Ход урока по химии в 9 классе

Организационный момент.

Сегодня на уроке мы продолжим ознакомление с окислительно-восстановительными реакциями , закрепим знания приобретенные на предыдущих занятиях, ознакомимся с реакциями окисления-восстановления, узнаем какую роль оказывает среда на протекание окислительно-восстановительные процессы. ОВР принадлежат к числу наиболее распространенных химических реакций и имеют огромное значение в теории и практике. ОВ процессы сопровождают круговороты веществ в природе, с ними связаны процессы обмена веществ, протекающие в живом организме, гниение, брожение, фотосинтез. Их можно наблюдать при сгорании топлива, в процессе выплавке металлов, при электролизе, в процессах коррозии. (слайды 1-7).

Тема окислительно-восстановительные реакции не нова, учащимся предлагалось повторить некоторые понятия и умения. Вопрос к классу? Что таксе степень окисления? (без этого понятия и умения расставлять степень окисления химических элементов не возможно рассмотрение данной темы.) Учащимся предлагается определить степень окисления в следующих соединениях:KCIO3, N2, K2Cr2O7, P2O5, KH, HNO3. Проверяют свои задания с записями на доске. Во всех ли случаях происходит изменение степени окисления. Для этого мы проведем лабораторную работу (на столах инструкции по выполнению опытов, инструктаж по т.б).

Провести опыты :1. CuSO4 + 2NaOH= Na2SO4 + Cu(OH)2

CuSO4 + Fe= Cu FeSO4

Расставляют со делают записи. Вывод: не все реакции относят к ОВР. (слайд 8).

В чем же заключается суть ОВР?(слайд 9).

ОВР-представляет собой единство двух противоположных процессов окисления и восстановления. В этих реакциях число отданных электронов восстановителем равно числу электронов присоединенных окислителем. Восстановитель повышает свою степень окисления, окислитель понижает.(не случайно выбран девиз урока.)Рассмотрим химическую реакцию(она имеет большое значение с точки зрения экологии т.к. позволяет при обычных условиях собрать случайно пролитую ртуть.

Н g0 + 2Fe+3Cl3-=2Fe+2Cl2-1 + Hg+2Cl2-1

Hg0 - 2ē → Hg+2

Fe+3+ē→ Fe+2

Учащимся предлагается решить задачу. Как среда влияет на поведение одного и того же окислителя, например: KMnO4

Выполняется лабораторная работа 2 по вариантам:

2KMnO4+ 5Na2SO3 +3H2SO4 = 2MnSO4 + 5Na2SO4 + K2SO4 +3H2O

2KMnO4+ Na2SO3 2KOH= 2K2Mn04+Na2SO4 H2O

2KMnO4 +3Na2SO3 +H2O= 2KOH +3Na2SO4+ 2MnO2

Вывод: среда влияет на окислительные свойства веществ.(слайд 10)

KMnO4 в кислой среде-Mn+2 -бесцветный раствор.

В нейтральной среде -MnO2 -бурый осадок,

В щелочной среде -MnO4-2 -зеленого цвета.

В зависимости от РН раствора KMnO4 окисляет различные вещества, восстанавливаясь до соединений Mn разной степени окисления.

Подводятся итоги урока. Выставляются оценки.

Рефлексия.

Класс высказывает свое мнение о работе на уроке.

Домашнее задание

Скачать презентацию к уроку по химии: «Окислительно-восстановительные реакции»