Как форма практических занятий в преподавании общепрофессиональных дисциплин (на примере технической механики) Щепинова Людмила Сергеевна преподаватель. Планирование "преподавание технической механики" Инновационные технологии по технической механике для

МИНИСТЕРСТВО ОБРАЗОВАНИЯ КРАСНОЯРСКОГО КРАЯ

Краевое государственное бюджетное профессиональное образовательное учреждение

«КРАСНОЯРСКИЙ МОНТАЖНЫЙ КОЛЛЕДЖ»

А.В. Пашихина

МЕТОДИКА ПРЕПОДАВАНИЯ ОСНОВ ТЕХНИЧЕСКОЙ МЕХАНИКИ НА УРОКАХ РАЗЛИЧНЫХ ТИПОВ

г. Красноярск

2017

Методическое пособие по основам Технической механики составлено для преподавателей, занимающихся обучением студентов специальностей, входящих в состав укрупненной группы специальностей:

    22.00.00 «Технологии материалов»;

    08.00.00 «Техника и технологии строительства»;

    15.00.00 «Машиностроение»;

    21.00.00 «Прикладная геология, горное дело, нефтегазовое дело и геодезия»;

    13.00.00 «Электро- и теплоэнергетика»

Целью методического пособия является демонстрация педагогического опыта при преподавании дисциплины «Техническая механика» на уроках различных типов.

Организация урока и его проведение определяется типом урока и его структурой. Наиболее часто при преподавании основ «Технической механики» применяются уроки следующих типов: изложение нового материала, практическое занятие, комбинированный урок, о методике преподавания которых и пойдет речь в данной статье.

ОБЩИЕ МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Дисциплина «Техническая механика» охватывает широкий круг вопросов из разных областей науки: теоретической механики, сопротивления материалов, деталей машин и механизмов.

Включение данной дисциплины в учебный план образовательных учреждений имеет своей целью:

    Повысить уровень технических знаний студентов для понимания ими устройства и работы механизмов и машин.

    Способствовать более глубокому научному обоснованию вопросов, изучаемых в специальной технологии, материаловедении и других технических дисциплин.

    Обеспечить сознательное понимание рассматриваемых на уроках приемов работы и технологических процессов.

    Научить студентов производить расчеты элементов конструкций на прочность, жесткость, устойчивость, срез, смятие, сжатие.

    Проводить сборочно-разборочные работы в соответствии с характером соединений деталей и сборочных единиц.

    Воспитать у студентов материалистическое мировозрение и поднять их культурный уровень.

    Соответствовать требованиям работодателя, продемонстрировав свой уровень подготовки на международных соревнованиях «Молодые профессионалы» (WorldSkills Russia ).

Большой объем учебного материала при ограниченном количестве часов, отведенных на изучении дисциплины, создает затруднения в преподавании этого предмета.

В данной статье предлагается методика преподавания основ дисциплины «Техническая механика» на уроках различных типов. Учитывается то, что основной формой учебных занятий является урок с постоянной по своему составу группой студентов.

УРОК №1 Изложение нового материала.

Тема: Введение. Техническая механика и ее разделы.

Цель: Ознакомить студентов с основными понятиями и терминологией механики. Заинтересовать предметом, указав разнообразие объектов, изучаемых механикой.

Наглядные пособия:

    Портреты виднейших ученых-механиков.

    Плакаты с изображением объектов, движение или равновесие которых рассматриваются в различных разделах дисциплины «Техническая механика».

    Презентация.

    Макеты механических передач и детали машин.

    Малые архитектурные и интерьерные формы, изготовленные из деталей машин.

Содержание урока: Любой урок начинается с приветствия аудитории и преподавателя, знакомства или проверки явки студентов на занятие.

Отличие данного типа урока от урока, например, комбинированного типа, заключается в том, что на нем не проводится опрос и проверка домашнего задания. Изложение нового материала приходится на начало учебного года или начало изучения нового раздела дисциплины.

В данной статье предлагается структура проведения урока, который приходится на первое занятие по дисциплине «Техническая механика».

Эффективность процесса познания зависит не только от содержания обучения, но и от того, как усваивается материал. Повышение качества усвоения материала решается мотивацией, повышением эффективности восприятия, пониманием и контролем усвоения материала. Все элементы эффективного обучения должны взаимодействовать со здоровьесбережением.

Мотивация придает образовательному процессу направленность, избирательность, осмысленность, динамичность и является важнейшим фактором успешного обучения. Для развития учебной мотивации необходимо формирование ее самим преподавателем, благодаря правильно подобранному типу обучения.

Эффективность восприятия подразумевает разнообразие используемых методик. Многообразие методических приемов не приводит к утомляемости студентов, так как невнятная речь затрудняет восприятие, равно как и громкая. Продолжительный просмотр видеоматериала приводит к быстрому зрительному утомлению, а аудиопоток – к слуховому утомлению и т.п. Поэтому считаю, что первый урок – это залог дальнейшего успеха. Представляя дисциплину, необходимо задействовать все виды восприятия: слуховое, зрительное, осязательное. За основу можно взять высказывание Конфуция «Скажи мне - и я забуду, покажи мне - и я запомню, дай мне сделать – и я пойму»/ Поэтому на первом занятии проводится демонстрация портретов, плакатов, презентации, макетов механических передач, деталей машин.

Изложение нового материала необходимо начать с кратких исторических сведений. При изложении основных этапов развития механики следует отметить, что механика, как и прочие науки, развивалась в связи с практическими потребностями общества. Нужно указать на работы величайшего ученого древности – Архимеда, на исследования Леонардо-да-Винчи, Галилея и Ньютона. Процитировать Леонардо-да-Винчи, как доказательство полезности науки: «Механика – самая благородная и, главное, самая полезная из наук». Указать некоторые интересные подробности биографий М.В. Ломоносова и Н.Е. Жуковского и роль русских ученых в развитии механики (предполагается презентация).

Разделы «Технической механики» необходимо представить структурной схемой, что даст некую последовательность в изучении дисциплины. При характеристике разделов механики необходимо указать на многообразие задач, решаемых их методами. Показать знакомые из курса физики величины на плакатах.

Указывая на роль техники в современном мире представить вниманию многообразие деталей и способов их соединений. Используя макеты, дать возможность студентам самостоятельно назвать области применения той или иной механической передачи (цепная передача), тем самым установив диалог. Обратить внимание на материал изготовления передачи (червячная передача), обязательно озвучить все моменты, которые будут в дальнейшем изучены.

Необходимо использовать и творческий потенциал. Предусматривается внеурочная деятельность студентов - конструирование и моделирование различных фигур, которые в дальнейшем неоднократно используются на занятиях, при изучении разделов «Технической механики». На вводном занятии представляются вниманию малые архитектурные и интерьерные формы, которые изготовили студенты прошлых учебных лет. Это интересный, доступный, занимательный и легко усваиваемый вариант изучения дисциплины. Рассказать о том, что по готовности фигур обязательно проводится выставка технического творчества «Занимательная механика», результаты данной внеурочной деятельности представляются в группе колледжа социальной сети «В контакте», где студенты могут проголосовать за понравившуюся им модель. Все участники проекта получают дополнительные баллы при сдаче экзамена или получении зачета, что мотивирует студентов для участия во внеурочной деятельности такого вида. Мотивация внеурочной деятельности положительно сказывается на успеваемости студентов и относится к разряду здоровьесберегающих педагогических технологий.

Необходимо на вводном занятии озвучить количество практических и самостоятельных работ, предусмотренных учебной программой. Обозначить необходимость своевременного решения и сдачи работ, как залога успешной сдачи сессии. Для закрепления материала преподаватель проводит опрос-беседу со студентами, во время которого он дает дополнительные объяснения, уточняет отдельные формулировки и отвечает на возникшие вопросы студентов. Заключительной частью урока является домашнее задание, которое вытекает из содержания урока.

УРОК №2 Комбинированный урок

Тема: Пара сил, ее действие на тело. Момент пары сил и эквивалентность пар.

Цель: Ознакомить студентов с понятием пары сил и ее физического смысла.

Наглядные пособия:

    Мяч.

    Плакат.

Содержание урока: Урок начинается с приветствия и проверки явки студентов на занятие. Затем преподаватель переходит к проверке домашнего задания, которая обычно начинается с беглого просмотра студентами своих записей в тетрадях. При этом устанавливается, насколько домашнее задание правильно понято и выполнено студентами. Содержание домашнего задания зависит от пройденного материала на предыдущем уроке и его проверка производится одним из следующих видов: опрос студентов, проверка решения задач, тестовые задания, выполнение схем и т.д. На уроке по данной теме для проверки знаний и восстановления в памяти студентов в логической последовательности всего комплекса изученных вопросов предусмотрены тестовые задания по теме «Плоская система сходящихся сил». Тестовые задания рассчитаны на 20-25 мин, включают в себя теоретические вопросы (выбор правильного ответа, дополнение недостающего слова) и практические вопросы (составление уравнений ∑ Fix и ∑ Fiy ).

После проверки домашнего задания преподаватель переходит к изложению нового материала, сообщение которого является наиболее ответственной частью урока, требующей тщательной подготовки преподавателя. Готовясь к занятию, преподаватель определяет содержание учебного материала, намечает последовательность его изложения, подбирает вопросы и примеры, необходимые для выявления степени усвоения студентами нового материала и закрепления его в памяти учащихся, отбирает необходимые для демонстрации на уроке учебно-наглядные пособия.

По новой теме преподаватель вводит понятия пара сил, плечо, момент пары, эквивалентность пар. После преподаватель предлагает студентам самостоятельно определить, что произойдет с телом, к которому приложена пара сил. Ответы бывают разные и не всегда правильные. Тогда преподаватель демонстрирует действие пары сил, беря в руки мяч. После наглядного объяснения студенты с легкостью отвечают, что пара сил стремится вращать тело. Далее преподаватель дает объяснение по моменту пары, плечу, эквивалентности пар, моменту результирующей пары. После изложения нового материала студенты имеют возможность задать вопросы. Если имеются вопросы по теме, то преподаватель разъясняет их. Если вопросов нет, то следующим этапом урока является закрепление нового материала.

Для закрепления материала студентам предлагается решение нескольких задач на определение момента пары, значения сил, результирующего момента.

Задача1. Определить значение сил пары если М=100 Н*м, а=0,2 м.

Задача 2. Как изменится значение сил пары, если плечо увеличить в два раза при сохранении численного значения момента.

Задача 3. Какие из приведенных ниже пар эквивалентны:

F 1 = 100 кН, а 1 = 0,5 м; F 2 = 20 кН, а 2 = 2,5 м; F 3 = 1000 кН, а 3 = 0,03 м.

Задача 4. Дана пара сил, значение которой равно 42 кН, плечо равно 2 м. Заменить заданную пару сил, эквивалентной парой.

Задача 5. Схематично дана система пар сил и указаны значения силы и плеча. Необходимо определить момент результирующей пары.

Примеры задач могут чередоваться с вопросами. Задачи решаются у доски студентами по очереди, другие учащиеся привлекаются к ответам и решению примеров и задач с места.

Заключительным этапом является выдача домашнего задания: необходимо повторить конспект и воспользоваться учебником А.И. Аркуша «Техническая механика» стр.27-33. А также выполнить задачу на определение момента результирующей пары.

УРОК №3 Практическое занятие

Наглядные пособия:

1. Методические указания для выполнения практических работ.

2. Плакат.

Содержание урока: Урок начинается с приветствия и проверки явки студентов на занятие. Выполнение практической работы начинается с решения общей задачи-примера. Студентам демонстрируется алгоритм решения задачи, правила построения схем и составления уравнений. Для выполнения каждого этапа решения задачи возможен вызов к доске студентов. Во время объяснения студентам демонстрируются все возможные варианты, которые встречаются при выполнении практической работы. После решения общей задачи студенты задают имеющиеся вопросы, получают на них дополнительные объяснения, формулировки.

Студенты выполняют практическую работу индивидуального варианта. Это позволяет проверить уровень знаний каждого студента.

В качестве дополнительной мотивации учебной деятельности студентам группы предлагается следующее: в случае, если работа (решение задачи и ее оформление) будет выполнена во время, равное продолжительности аудиторного занятия, то не потребуется дополнительной защиты при сдаче практической работы.

Во время выполнения практической работы студентам выдаются методические указания, в которых представлены краткие теоретические сведения, пример выполнения практической работы и варианты задач со схемами.

Практическое занятие № 1

Тема: Определение реакций идеальных связей аналитическим способом.

Цель: Научиться составлять уравнения равновесия и определять реакции идеальных связей аналитическим способом.

Краткие теоретические сведения.

Условие равновесия плоской системы сходящихся сил: 𝛴 Fкх=0, 𝛴 Fку=0.

Для равновесия плоской системы сходящихся сил необходимо и достаточно, чтобы алгебраические суммы проекций всех сил системы на каждую из двух осей координат были равны нулю. Проекция системы на ось равна модулю силы, умноженному на косинус угла между силой и осью.

- - - - - - - - - - - - α - - - - - - - - - - - - - - - Х

F x = F COS α

- - - - - - - - - - α - - - - - - - - - - - - - - Х F x = - F COS α

Х F x = F

Х F x = - F

X F x = 0

Пример: Определить аналитическим способом усилия в стержнях АВ и ВС заданной стержневой системы (рис 1.1).

Дано: F 1 = 28кН; F 2 = 42кН; α 1 = 45°; α 2 = 60°;α 3 = 30°.

Определить: усилия S A и S C .

Рис. 1.1

Решение:

а) рассматриваем равновесие точки В, в которой сходятся все стержни и вешние силы (рис 1.1);

б) отбрасываем связи АВ и ВС, заменяя их усилиями в стержнях S A и S C . Направления усилий примем от узла В, предполагая стержни растянутыми. Выполним на отдельном чертеже схему действия сил в точке В. (рис.1.2).

Рис.1.2

в) выбираем систему координат таким образом, чтобы одна их осей совпала с неизвестным усилием, например с S А . Обозначим на схеме углы, образованные действующими силами с остью Х и составляем уравнения равновесия плоской системы сходящихся сил:

𝛴F кх = 0; F2 · + F1 · · S c · - S A = 0; (1)

𝛴F ку = 0; F2 · - F1 · - S c · = 0 (2)

Из уравнения (2) находим усилие S c = .

Подставим числовые значения: S c = = 16,32кН.

Найденное значение S c подставляем уравнение (1) и находим из него значение S А ;

S А = F2 · + F1 · · S c · ;

S А = 42 · 0,259 + 28 · 0,5 + 16,32 · 0 = 24,88 кН.

Ответ: S А = 24,88кН; S С = 16,32кН.

Знаки указывают на то, что оба стержня растянуты.

Исходные данные

1

Схема

F 1 , кН

F 2 , кН

α 1 , град

α 2 , град

α 3 , град

Список литературы

1. Федеральный закон от 29.12.2012 № 273-ФЗ (ред. от 03.04.2014) «Об образовании в Российской Федерации»

2. Абаскалова Н.П., Прилепо А.Ю. Теоретико-практические аспекты здоровьеориентированных педагогических технологий // Вестн. Пед. Инноваций.- 2008.-№2

3. Интернет ресурс tsitaty.com

4. Аркуша А.И., Фролов М.И. Техническая механика // Учебн., Москва, Высшая школа.- 2005.

Задачи, легкие или сложные, хорошие или не очень, требующие решения, преследуют любое живое биологическое существо постоянно. Часто в разговорах, в спорах, в размышлениях я вспоминаю следующую ситуацию из детства: кошка нашла по жалобному мяуканью котенка, провалившегося за ящик. Расстояния были не более 70мм между ящиком и стеной с двух граней, между ящиком и основанием, остальные грани свободные. Мгновенно сообразив, кошка распласталась, полезла под ящик, прихватив одной лапой детеныша-неудачника, вытащила котенка. Затем легла на бок, положила котенка на лапы, а верхними лапами била непослушного, на что наказуемый, мяукая, просил прощения (жаль, что бумага не изображает звука). Пример приведен мною для доказательства, что жизнь сама заставляет творчески (креативно) мыслить любое биологическое существо, потому что надо жить и выжить не толькобиологической (социальной) единице, но и ее потомству (государству).

Человеческая деятельность всегда требовала творческого мышления. Анализируя свое окружение, человечество изучило колоссальное число систем, нашло множество связей между системой и ее надсистемой, наднадсистемой, подсистемой, подподсистемой и т.д. и изобрело множество методик решения сложных и хороших задач, объединенных в настоящее время в единую теорию решения изобретательских задач (ТРИЗ). Ее разработка и распространение связаны с именем инженера-изобретателя, писателя-фантаста Г. С. Альтшуллера

ТРИЗ развивает системный и диалектический образ мышления, применимый к любым жизненным ситуациям. ТРИЗ - это наука о творчестве. Основным теоретическим положением ТРИЗ является утверждение, что технические системы развиваются по объективным, познаваемым законам, которые выявляются путем изучения больших массивов научно-технической информации и истории техники.

Основными особенностями ТРИЗ являются: использование закономерностей развития систем; выявление и разрешение противоречий, возникающих при развитии систем; систематизация различных видов психологической инерции; использование методов ее преодоления, развитие многоэкранного (системного) стиля мышления, использование специальных системных операторов, методика поиска ресурсов (вещественных, энергетических, информационных и др.), структурирование информации о проблемной ситуации, специальное информационно-методическое обеспечение.

В статье описан пример использования методов ТРИЗ Г. С. Альтшуллера в обучении студентов технической механике. Тренинг как интенсивное обучение с практической направленностью был выбран в качестве технологии проведения занятия. Структура тренинга включает в себя блоки, реализующие цели занятия, адекватные целям креативного образования в целом .

Блок 1. Мотивация. К инженеру завода, выпускающего мини-тракторы, после сдачи стандартных тестовых заданий на профессиональную пригодность, пришли на собеседование трое молодых претендентов, получивших одинаковое количество высоких баллов. К счастью или к несчастью, оказалось, что трое молодых людей оказались знакомы друг с другом. Сославшись на вызов управляющего на один час, инженер попросил претендентов (по желанию) помочь решить одну проблему, результат которого будет влиять на прием одного из претендентов на очень высокооплачиваемую работу. Проблема состояла в следующем: перед входом в высотное здание, где находился административный блок предприятия, требовалось установить макет мини-трактора. Вес мини-трактора 1200 кг. Принимается любое техническое решение данной проблемы.

Покажите хоть одного человека (даже лен-н-н-нивого), не желающего работать с высокой зарплатой?

Задача - проблема есть и каждый студент (претендент) на занятии ищет свой алгоритм решения задачи, используя свой уровень творческого мышления. Начинаем творить чудеса. Думаем и творим, творим и думаем. Системное мышление, строго учитывающее все положения системного подхода - всесторонность, взаимоувязанность, целостность, многоаспектность, учитывающее влияние всех значимых для данного рассмотрения систем и связей нерасчлененного, синкретического мышления. С точки зрения системного подхода объекты, входящие в данную систему, должны рассматриваться и сами по себе, и в связи со многими объектами и явлениями. Достаточно выделить только наиболее устойчивые связи, непосредственно и значительно влияющие на решение поставленной задачи и поддающиеся реальной оценке.

Задача преподавателя, заключается в поддержке и развитии творческого мышления, в преодолении психологических барьеров у студентов, в умелом применении методов научного творчества. Формулирую ненавязчиво вопросы - подсказки: «Обозначить в решаемой задаче надсистему - систему - подсистему»; «Какие функции несут надсистема - система - подсистема?»; «Что требуется изменить для решения задачи: надсистему - систему - подсистему и как это сделать?» и т.д. Итогом этого блока должны быть идеи студентов для решения поставленной задачи в любой форме: выполнение эскизов, выявление и разрешение противоречий, возникающих при развитии системы. Наблюдаю, помогаю без афиширования, даю возможность на негласную подсказку продолжением занятия.

Блок 2. Содержательная часть 1. Основание для установки макета мини - трактора, допустим, был утвержден со сверх-эффектом: в пространство основания было решено ставить велосипеды сотрудников (сообразительным подсказка). В ходе конструирования был принят вариант, где несущие элементы работали на сжатие.

Сжатием называется такой вид нагружения, при котором в сечении бруса возникает только один внутренний силовой фактор - продольная сила, обозначается буквой N, размерность в ньютонах,Н. Нормальным напряжением называется продольная сила, приходящаяся на единицу площади, обозначается буквой σ (сигма), размерность в ньютонах на квадратный миллиметр, Н/мм 2 .

Условие прочности при сжатии:

σ = N/А ≤ | σ |;

где σ - расчетное напряжение, Н/мм 2 ;

N - сжимающая продольная сила, Н;

А - площадь поперечного сечения, мм 2 ;

| σ | - допускаемое напряжение материала, Н/мм 2 .

Суть сжатия или растяжения: действуя на брус вдоль продольной оси, проходящей через центр тяжести поперечного сечения бруса, внешняя сила - действие вызывает противодействие - внутренний силовой фактор, названной продольной силой N. Значит, внутренний силовой фактор - это сила, возникающая в самом материале только от действия внешней силы. Разнообразие материалов в природе подтверждается их внутренним строением, различными силами притяжения и отталкивания молекул вещества.

Совсем маленькая стартовая площадка для творческого мышления при расчете на сжатие: определение площади поперечного сечения и подбор материала детали.

В вышеуказанном теоретическом материале доминирует инерция привычных, специальных терминов.

Из условия прочности находим требуемую площадь поперечного сечения, приравняв расчетное напряжение допускаемому напряжению материала:

А тр = N/ | σ |;

Допустим А тр = 18 см 2 .

Требуется определить стойку из стандартных металлических профилей: швеллера, балки двутавровой и уголка равнополочного.

По ГОСТ 8240-89 «Швеллеры» подбираем швеллер № 16 с площадью поперечного сечения равным А=18,1 см 2 , что больше А тр = 18 см 2 .

По ГОСТ 8239-89 «Балки двутавровые» подбираем балку двутавровую № 16 с площадью поперечного сечения равным А=20,2см 2 ,что больше А тр = 18 см 2 .

По ГОСТ 8509-89 «Сталь прокатная уголки равнополочные» подбираем уголок равнополочный № 10 с площадью поперечного сечения равным А=19,24см 2 ,что больше А тр = 18 см 2 .

Какой вариант самый экономичный? Почему? (Экономичным вариантом будет вариант стойки из швеллера № 16).

Блок 3. Интеллектуальная разминка.
1. Прочитав стихотворение, определить время года

Молчание текло,

Прошел страстей накал,

И солнце не пекло,

И горек запах трав,

Забвение пришло. (Осень).
2. «Она пошла - ее съели» - что или кто это? (Шахматная пешка).
3. Давайте будем устраиваться на работу. Пришел инженер и готов внимательно выслушать ваши решения поставленной проблемы. Условия следующие: объяснять жестами и говорить, свернув губы вовнутрь рта. Пробуем объяснить друг другу.

Блок 4. Содержательная часть 2. Основание для установки макета мини - трактора был утвержден со сверх-эффектом: в пространство основания было решено запроектировать киоск продажи периодической печати. В ходе конструирования был принят вариант, где несущие элементы работали на продольный изгиб (сжатие с изгибом).

Суть продольного изгиба в следующем: действуя на стержень вдоль продольной оси, проходящей через центр тяжести поперечного сечения стержня, внешняя сила одновременно сжимает и изгибает стержень. Условие устойчивости сводится к определению критической силы:

где F - сжимающая сила, Н;

Fкр - критическая сила, Н;

|s| - допускаемый коэффициент запаса прочности

Наибольшее значение сжимающей силы, при которой прямолинейная форма стержня сохраняет устойчивость, называется критической силой.

Методика решения задач на устойчивость стержней большой гибкости была предложена математиком Л. Эйлером в 1744 году. Дополнения внес Ф. О. Ясинский для расчета стержней средней гибкости.

В вышеуказанном теоретическом материале также доминирует инерция привычных, специальных терминов.

Блок 5. Головоломка. Каждый группа из 6-10 студентов, предварительно проанализировав и смоделировав систему, предлагают общую модель через основные шаги моделирования:

а) понять задачу;

б) понять работу системы и определить части (подсистемы), участвующие в выполнении Главной функции;

в) определить связи между этими частями.

Для принятия модели используем мозговой штурм - метод активизации творческого мышления, основанного:

а) на групповом выдвижении альтернативных идей с их оценкой и развитием скрытых в них возможностей;

б) на предположении, что при обычных условиях обсуждения и решения проблем возникновению творческих идей препятствуют контрольные механизмы сознания, которые сковывают поток идей под давлением различных видов психологической инерции.

При проведении мозгового штурма ведущий - я соблюдаю правила подготовительного и, особенно, генерующего этапа:

а) запрет критики;

б) запрет обоснования выдвигаемых идей;

в) поощрение всех идей, даже нереальных и фантастических.

При проведении мозгового штурма использую специальные приемы активизации мышления: списки наводящих вопросов, расчленение, простое изложение, неожиданные ассоциации, освобождение от терминологии.

Блок 6. Компьютерная интеллектуальная разминка. После коллективного обсуждения поставленной задачи прошу перейти к компьютерам и перенести принятый вариант персонально на компьютер (наличие Интернета обязательно).

Блок 7. Резюме. Продолжим коллективно предложение: «Инженер завода возьмет на работу такого работника, который...». Обсуждаем самые креативные варианты, выбранные голосованием и варианты самовыдвиженцев.

Кому понравилось занятие, тот поднимает карточку с улыбающейся рожицей, посчитали. Подведем итоги.

В ходе нашей опытно-экспериментальной работы выявлено положительное влияние предложенных адаптированных методов научного творчества на профессиональные компетенции обучающихся, в части на развитие креативности. Это позволяет говорить о необходимости дальнейшей работы по адаптации методов научного творчества для преподавания технической механики.

  1. Зиновкина М. М., Утёмов В. В. Структура креативного урока по развитию творческой личности учащихся в педагогической системе НФТМ-ТРИЗ // Современные научные исследования. Выпуск 1. - Концепт. - 2013. - ART 53572. - URL: http://e-koncept.ru/article/964/ - Гос. рег. Эл № ФС 77- 49965. - ISSN 2304-120X.
  2. Утёмов В. В. Адаптированные методы научного творчества в обучении математике // Концепт: научно-методический электронный журнал. - 2012. - № 7 (июль). - ART 12095. - 0,5 п. л. - URL: http://www.covenok.ru/koncept/2012/12095.htm. - Гос. рег. Эл № ФС 77-49965. - ISSN 2304-120X

Musina Maira Saitovna,

[email protected]

Adapted methods of scientific work in the training of technical mechanics.

Annotation. The article considers the training of creative thinking in the training of technical mechanics. The author describes the methods of scientific creativity theory of inventive problem solving is given block description of one of the sessions of the training.

Key words: theory of inventive problem solving, systems thinking, creativity, mental inertia, brainstorming.

Лютая Л.Ф.,

преподаватель общепрофессиональных дисциплин ГБПОУ «Брюховецкий аграрный колледж», ст. Брюховецкая Краснодарского края

ПРИМЕНЕНИЕ КОНЦЕНТРИРОВАННОГО ОБУЧЕНИЯ ПРИ ПРЕПОДАВАНИИ ДИСЦИПЛИНЫ «ТЕХНИЧЕСКАЯ МЕХАНИКА»

Развитие техники и внедрение новых технологий в современном производстве предполагает повышение образовательного уровня, профессионального мастерства и мобильности современных специалистов. Современному обществу нужна личность, способная самостоятельно и творчески приобретать, усваивать и применять знания в изменяющихся условиях производства. Анализ современной поурочной системы обучения позволяет обнаружить ряд недостатков и противоречий. Усвоение учебной дисциплины при такой организации обучения растягивается на длительное время, в абсолют вводится не умение видеть закономерности, а знание конкретных правил, отдельных формул, изучаемый на уроках учебный материал отличается большой пестротой: калейдоскоп новых понятий, законов, правил, принципов, дат, явлений обрушивается на студентов едва ли не на каждом уроке. «Следствием такого "содержательного винегрета" является распыление внимания студентов на ряд предметов. Постоянная смена предметов, кабинетов, педагогов не позволяет студентам ни в один из них погрузиться полностью, не дает возможности остановиться на чем-то, задуматься поглубже над заинтересовавшим вопросом, предметом» . Разрешение этого противоречия требует перехода к иной организации обучения, которая бы максимально сближала учебный процесс с естественными психологическими особенностями человеческого восприятия, усвоения и запоминания информации. Этой задаче отвечает концентрированное обучение. «Цель концентрированного обучения заключается в ликвидации многопредметности учебного дня, калейдоскопичности ощущений и впечатлений при формировании знаний, раздробленности процесса познания. Эффективность учебного процесса при концентрированном обучении достигается благодаря реальному комплексированию всех компонентов процесса обучения: целевого, содержательного, контрольнооценочного. Концентрированное обучение отвечает духу демо-

кратизации и гуманизации образования, объединяет все составные части педагогического процесса, соответствует потребностям современной средней профессиональной школы» .

Дисциплина «Техническая механика» играет важную роль в формировании технического инженерного мышления будущего техника-механика, способствует формированию навыков самостоятельно ориентироваться в стремительном потоке научной и технической информации. Все возрастающий объем информации, применение новых методов проектирования конструкций требуют отбора необходимых сведений для подготовки специалистов определенного профиля. Экстенсивный путь простого увеличения количества учебного времени исчерпан. Достижение при изучении «Технической механики» таких целей, как целостность, логичность процесса познания, заинтересованность в обучении, разнообразие учебной деятельности в рамках классно-урочной системы с ее многопредметностью и рассредоточенностью процесса изучения дисциплины не дает желаемого педагогического эффекта. Для достижения этих целей преподавателю необходимо: систематизировать учебный материал; выделить основное, главное; структурировать его, использовав однотипность структуры формул и аналогичность законов, явлений; установить единство методов расчета в дисциплине «Техническая механика» и их практическую направленность; организовать самостоятельную работу студентов. «В вузах России накоплен положительный опыт концентрированного обучения отдельных дисциплин: педагогики (В.С. Безрукова, Екатеринбургский инженернопедагогический институт]; специальных предметов (В.М. Гареев и др., Уфимский авиационный институт; А.Т. Попов, Т.В. Давыдова, Магнитогорский горно-металлургический институт]» . Образовательная технология концентрированного обучения рассмотрена как один из подходов к организации обучения, позволяющий снять трудности, преодолеть которые в рамках традиционной классно-урочной системы организации обучения не всегда возможно.

«Концентрированное обучение - это технология организации обучения, при которой в течение короткого или длительного периода осуществляется концентрация энергии и рабочего времени учащихся на изучении одной или нескольких дисциплин» . Цель концентрированного обучения состоит в повыше- 64 -

нии качества обучения и воспитания учащихся (достижение системности знаний, их мобильности и т.д.) путем создания оптимальной организационной структуры учебного процесса. Цель концентрированного обучения заключается также в ликвидации многопредметности учебного дня, калейдоскопичности ощущений и впечатлений при формировании знаний, раздробленности процесса познания. Дидактико-методическое обеспечение процесса концентрированного обучения дисциплине «Техническая механика» включает: проектирование содержания дисциплины «Техническая механика» в условиях концентрированного обучения, методическое обеспечение концентрированного обучения дисциплине, подготовку педагога как условие реализации концентрированного обучения. Реализация в педагогическом процессе образовательной технологии концентрированного обучения дисциплине «Техническая механика» требует адекватного структурирования содержания учебной информации. Учебный процесс преподавания дисциплины проектируется модульным по содержанию и концентрированным по форме. Дидактические условия реализации концентрированного обучения дисциплине заключаются в подготовке содержания дисциплины к условиям концентрированного обучения по следующему алгоритму: анализ содержания предмета на необходимость и возможность систематизации и структурирования, выделение общих объектов изучения; узловых, стержневых вопросов; подготовка содержания предмета к условиям концентрации (построение структурной схемы предмета, формирование модулей (блоков] содержания); проектирование рабочей программы предмета (проектирование модулей изложения и понимания учебного материала и разработка временного аспекта концентрированного обучения); в разработке дидактико-методического обеспечения процесса концентрированного обучения. Основными средствам обучения являются блочно-модульная программа дисциплины, график погружения в дисциплину, дидактико-методическое обеспечение каждого блока. Модульная программа изучения дисциплины «Техническая механика» отражает содержательный компонент процесса обучения (содержание учебной информации), процессуальный компонент (формы и методы обучения], а также требования к умениям и навыкам студента по предмету и временной аспект. Изучение содержания модуля выстраивается в соответствии со структурной схемой модуля.

Структурная схема содержания учебного модуля раздела 2 «Сопротивление материалов»

Учебный материал структурируется на основе принципов целостности и системности. Выделяется «ядро» знаний (постулаты, законы, закономерности], вокруг которого формируется «оболочка» - материал прикладного характера. Структурированное таким образом содержание дисциплины требует и соответствующих средств для наглядного представления и формирования у студентов системных знаний. С этой целью широко используются опорные сигналы и конспекты, структурно-логические схемы, таблицы, учебные презентации. Концентрированное обучение позволяет в наибольшей степени разнообразить формы и методы изучения учебного материала, обеспечить целостность его усвоения. Основной учебно-организационной единицей при концентрированном обучении становится не урок, а учебный блок, который включает различные формы организации обучения. Модули разделяют на блоки. Блок - временная учебная еди-

ница, содержащая относительно самостоятельную часть учебного материала. В условиях кардинального изменения учебного процесса структурированные учебные блоки состоят из теоретического обучения (лекции], самостоятельной работы студентов над учебным материалом в различных формах, практических занятий, лабораторных работ, контрольных работ, зачетов, выполнения тестовых заданий. Необходимым условием реализации концентрированного обучения является подготовка педагога. Изменение формы обучения и структуры всего учебного процесса потребовали изменения содержания обучающей деятельности преподавателя, что, в свою очередь, предполагало не только пе-реструктурирование учебного материала в укрупненные дидактические единицы, но и разнообразие видов деятельности и форм учебного взаимодействия со студентами в процессе обучения. Непременным условием успешности является переосмысление каждым педагогом своего места и роли в педагогическом процессе. В новых условиях каждый преподаватель должен быть готовым качественно провести не один урок в день, а «отработать» целую тему, выступать не просто в роли носителя учебной информации и контролера, а быть организатором учебнопознавательной деятельности обучающихся в различных формах, использовать широкий спектр методов и приемов в профессиональной деятельности. Концентрированное обучение позволяет обеспечить экономию учебного времени (изучается большой объем за более короткое время], обеспечивает интеграцию теории и практики; способствует реализации целостного процесса познания, знания и умения формируются в единстве; создает благоприятные условия для сотрудничества и общения преподавателей и студентов, создает благоприятный микроклимат; повышает уровень усвоения материала; активизирует познавательный интерес; формирует мотив учения.

Список использованной литературы

1. Бильбас А.Н. Предметно-групповая форма организации занятий // Народное образование. 1993. № 2. С. 20-21.

2. Ибрагимов Г.И., Колесников В.Г. Концентрированное обучение в средней профессиональной школе. Казань, 1998. С. 103.

3. Концентрированное обучение в системе среднего профессионального образования // Среднее профессиональное образование. 1996. № 3. С. 83-89.

4. Клюева Г.А. Концентрированное обучение теоретическим основам профессии в начальной профессиональной школе. Казань, 2000. 13 с.

5. Лукьянова В.С., Остапенко А.А. Школа самовыражения. Азовский экспериментально-педагогический комплекс: три года пути // Педагогический вестник Кубани. Краснодар. 1998. № 1. С. 20-25.

6. Остапенко А.А. Уроки-«погружения» по физике // Физика в школе. 1988. № 4. С. 25-28.

7. Остапенко А.А. Концентрированное обучение: модели образовательной технологии. Краснодар: Департамент образования и науки, 1998, 56 с.

8. Прохорова Я.Г.Концентрированное обучение русскому языку в основной школе. Азовская: АЭСПК, 1997. 32 с.

1

Реализация требований основной образовательной программы бакалавриата предполагает сформированность у выпускников определенных компетенций. В настоящей работе исследуется влияние на результаты обучения пассивных, активных и интерактивных средств обучения. Сравниваются группы с разными подходами в преподавании таких дисциплин как «Теоретическая механика», «Техническая механика», «Моделирование в технике». Результаты промежуточных аттестаций по техническим дисциплинам отслеживались в течение нескольких лет. Если говорить об овладении теоретическим материалом, то результаты экзаменов и курсовых работ показали рост оценок в баллах примерно на 3 %. Однако в области решения практических задач результаты примерно на 8–9 % выше в группах, где использовались инновационные педагогические технологии. Кроме того, были сформированы у студентов навыки поиска информации, способности к коммуникации в устной и письменной формах, работы в коллективе.

технические дисциплины

формирование компетенций

интерактивные методы обучение

1. Проектирование основных образовательных программ вуза при реализации уровневой подготовки кадров на основе федеральных государственных образовательных стандартов / под ред. С.В. Коршунова. – М.: МИПК МГТУ им. Н.Э. Баумана, 2010. – 212 с.

2. Раевская Л.Т. Профессиональные компетенции при изучении теоретической механики /Л.Т. Раевская // Образование и наука: современное состояние и перспективы развития: сборник научных трудов по материалам Международной научно-практической конференции 31 июля 2014 г.: в 6 ч. Ч. 1. – Тамбов: ООО «Консалтинговая компания Юком», 2014. – С. 143-144.

3. Будерецкая И.В. Интерактивные методы обучения //Материалы семинара «Интерактивные методы и инновационные технологии обучения в образовательном процессе» [Электронный ресурс]. – URL: http://nsportal.ru/nachalnaya-shkola/materialy-mo/2013/12/21/interaktivnye-metody-obucheniya (дата обращения: 09.06.2017).

4. Татур Ю.Г. Образовательный процесс в вузе: методология и опыт проектирования: учеб. пособие /Ю.Г. Татур. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2009. – 262 с.

5. Рогова Е.М. Особенности организации процесса обучения на основе кейс-метода. Методическое пособие / под ред. М.А. Малышевой / Современные технологии обучения в вузе (опыт НИУ ВШЭ в Санкт-Петербурге). – Отдел оперативной полиграфии НИУ ВШЭ – Санкт-Петербург, 2011. – 134 c.

В федеральных государственных образовательных стандартах высшего образования обязательным требованием к результатам освоения программы бакалавриата является сформированность определенного набора компетенций. В понятие компетенции входят модули - знания, умения и навыки, и личностные качества. «Модульная образовательная программа - совокупность и последовательность модулей, направленная на овладение компетенциями, необходимыми для присвоения квалификации» .

Инновационные технологии - это те, которые предполагают не столько освоение дисциплины, сколько формирование компетенций, для чего используют активные и интерактивные методы обучения. К таким технологиям относятся, например, информационно-коммуникационные технологии (привлечение информатики в изучение технических дисциплин), личностно-ориентированные технологии (развивающие природные данные обучающихся, коммуникативные способности), дидактические (использование новых приемов, методов в учебном процессе) и др.

С первых встреч с обучающимися преподаватели технических дисциплин должны обеспечить конкретное понимание целей изучения дисциплины, вклад данной дисциплины в формирование компетенций. Для этого образовательная программа должна обеспечивать в большей части проблемный, исследовательский характер обучения, мотивируя будущих выпускников на приобретение требуемых компетенций. Принято выделять несколько основных методов организации занятий, используемых преподавателями в своей области . Пассивный метод - это форма взаимодействия преподавателя и обучающегося, при которой преподаватель является основным действующим лицом, управляющим ходом занятия, а обучающиеся выступают в роли пассивных слушателей. Мы не считаем, что надо полностью отказаться от пассивного метода. Вопрос в соотношении, в доле пассивных способов во всем процессе познания. Этот метод не должен превалировать.

Активный метод обучения - это организации учебного процесса, которая способствует более активному, чем при пассивном способе, взаимодействию с преподавателем. Если пассивные методы предполагали авторитарный стиль взаимодействия, то активные предполагают демократический стиль. При этом преподавателю «приходится пересмотреть традиционную методику преподавания, когда в аудитории есть только привычные доска и мел» .

Интерактивный метод. Сегодня недостаточно быть компетентным только в своей области и уметь передавать определенную сумму знаний обучающимся. В настоящее время преподавателю необходимо организовать процесс таким образом, чтобы вовлекать в получение знаний самих студентов, чему способствуют активные, а еще больше - интерактивные методы обучения. Известно, что обучающиеся легче понимают и запоминают материал, который они изучали посредством активного вовлечения в учебный процесс. Интерактивный метод - это «замыкание» студентов на себя. Главное - общение студентов между собой в процессе получения знаний. Роль преподавателя на интерактивных занятиях сводится к направлению деятельности обучающихся на достижение целей занятия. Интерактивное обучение - это прежде всего диалоговое обучение.

Форм активного и интерактивного обучения много, напомним лишь о некоторых из них: творческие задания, лекции с ошибкой, мозговой штурм, конференции с презентацией докладов и обсуждением, учебная дискуссия, обучение с помощью компьютерных программ, метод кейсов. Метод кейсов можно представить как сложную систему, в которую включены и другие, более простые методы познания. В него входят моделирование, системный анализ, проблемный метод, мысленный эксперимент, имитационное моделирование, методы классификации, игровые методы, которые выполняет в кейс-методе свои роли . Приобретение компетенций основано на деятельности. А значит сама возможность усвоения знаний, навыков, умений зависит от активности обучающихся. Правильно организовать эту активность - задача преподавателя высшего учебного заведения.

Цели исследования

Многолетние наблюдения учебного процесса выявили все более и более слабую математическую подготовку поступающих, отсутствие самостоятельности и интереса к учебе, желание по любому поводу искать ответ в интернете, неумение сосредоточиться, страх публичных выступлений и отсутствие терпимости к высказываниям других. Все это и стимулировало поиск каких-то новых подходов к работе с нынешними обучающимися.

В процессе обучения необходимо обращать внимание в первую очередь на те методы, при которых слушатели идентифицируют себя с учебным материалом, включаются в изучаемую ситуацию, побуждаются к активным действиям, переживают состояние успеха и соответственно мотивируют свое поведение. Например, дискуссия в малых группах дает шанс каждому участнику внести что-то свое в обсуждение, почувствовать независимость от преподавателя, проявить лидерские качества, повторить материал. И хотя новые взгляды на обучение не всеми преподавателями принимаются как руководство к изменению собственных шаблонов преподавания, поиску интерактивных способов взаимодействия с группой, нельзя игнорировать данные исследований, подтверждающих, что использование активных подходов является эффективным способом обучения.

Целью нашего экспериментального исследования было определение возможности и эффективности использования активных и интерактивных форм при обучении техническим дисциплинам. Задачи исследования ставились следующие: в течение трех лет проводить мониторинг результатов промежуточных аттестаций по нескольким техническим дисциплинам в ряде групп; в нескольких группах постепенно год от года увеличивать долю активных и интерактивных подходов как в лекциях, так и в практических и лабораторных занятиях; в одной группе проводить традиционные занятия по техническим дисциплинам; провести сравнительный анализ результатов промежуточных аттестаций в группах с большой долей активных методов и в группе традиционного обучения в течение трех лет; собрать по возможности информацию об основных наиболее эффективных методах. Занятия во всех группах вел один и тот же преподаватель.

Методы исследования

Исходя из целей исследования, были выбраны группы направлений 08.03.01. «Строительство», 13.03.02. «Электроэнергетика и электротехника» (профиль бакалавриата), с которыми работали авторы данной статьи. Активные формы взаимодействия использовались нами в преподавании таких дисциплин, как «Теоретическая механика», «Техническая механика», «Моделирование в технике». Теоретическая механика изучается в третьем семестре, студенты сдают экзамен и курсовую работу с оценкой. Техническая механика дается в четвертом семестре, в результате студенты должны получить зачет. Курс «Моделирование в технике» читается бакалаврам третьего года обучения, промежуточная аттестация - зачет.

Были отобраны несколько методов.

Метод мозгового штурма использовался главным образом на лекции. Лекции обязательно содержали проблемные вопросы, ответ на которые предлагалось найти этим методом. В теоретической механике, например, надо было определить число неизвестных реакций опор в статике, сформулировать понятие вектор-момента или порядка решения задач. В курсе технической механики при первом знакомстве с группами Ассура, предлагалось вычислить класс заданной группы Ассура, смоделировать группу 4-го класса с последующим выступлением перед всей аудиторией, в котором надо было обосновать свой выбор. В лекции по дисциплине «Моделирование в технике» после объяснения классификации видов моделирования предлагалось дать характеристику программе CFD- моделирование (computational fluid dynamics), которая воспроизводит на компьютере процесс обтекания объекта какой-либо жидкостью или газом (что демонстрировалось показом слайдов). Необходимо было ответить на вопросы: реальная или мысленная модель, динамическая или статическая, дискретная или непрерывная и т.д.

Метод «творческое задание» помогал развить исследовательские навыки обучающихся. Такие задания студенты получали после знакомства с основными подходами к формализации и моделированию равновесия и движения материальных тел. Например, в теоретической механике в задачах раздела «Статика» предлагали первокурсникам не просто вычислить реакции связей, но и найти их зависимость от вида связей. После небольшого исследования они должны сделать вывод о преимуществах тех или иных опор. В разделах «Кинематика» и «Динамика» студенты разными методами решают одну и ту же задачу, что расширяет их кругозор, помогает повторить материал и формирует навыки решения задач. В технической механике надо было провести сравнительный анализ методов решения статически неопределимых задач. Предлагались к рассмотрению балочно-стержневые конструкции, решение следовало провести энергетическим методом и методом сравнения деформаций и обосновать преимущества того или иного метода.

Метод кейсов (Case-study) - это предложение группе конкретной ситуации с целью поиска решения, обоснования данного решения с подробным анализом поиска решения. Представилось возможным использовать метод кейсов в преподавании технических дисциплин для работы в малых группах. Деятельность в малых группах - это одна из самых результативных стратегий, так как она дает всем студентам возможность участвовать в работе, практиковать навыки сотрудничества, межличностного общения (в частности, умение активно слушать, вырабатывать общее мнение, разрешать возникающие разногласия). К примеру, первокурсникам, приступившим к изучению теоретической механики, предлагались задания типа - «Два груза массами m1=m кг и m2=3m кг, соединенные невесомой нерастяжимой нитью, необходимо поднять и перенести. Один рабочий предложил поднимать груз, взявшись за первый груз, второй рабочий предложил держаться за второй груз при подъеме, а третий сказал, что неважно, за какой из грузов держаться, это не приведет к разрыву нити между грузами. Кто прав? В какой ситуации меньше вероятность разрыва нити, если в любом случае для подъема прикладывается одна и та же сила F к соответствующему грузу?» В начале занятия обсуждали принципы работы в группе: занятие - не лекция, предполагается общая работа с участием каждого студента в группе; все участники равны независимо от возраста, социального статуса, опыта; каждый участник имеет право на собственное мнение по любому вопросу; нет места прямой критике личности (подвергнуться критике может только идея).

Время обсуждения задания и решения ограничивалась 30-40 минутами. После чего представитель каждой группы делал небольшое сообщение в соответствии с листингом вопросов, которые надо было осветить. Вопросы включали не только результат решения, но и анализ процесса поиска решения. После выступления всех групп преподавателем подводились итоги с указанием на распространенные ошибки, делались выводы.

Метод «Компьютерная симуляция» применялся в преподавании дисциплины «Моделирование в технике». Студентам, например, предлагались задания по моделирования технологического процесса с помощью средств визуализации. Предлагалось диагностировать переходный процесс при запуске устройства, после чего методом подбора параметров оптимизировать переходный процесс. Группа разбивалась на подгруппы по 2 студента. Были поставлены цели: 1) ознакомление с инструментальными приложениями программного пакета Scilab, получение навыков первоначальной работы с системой визуального моделирования Xcos; 2) исследование на ЭВМ динамических свойств объекта. В качестве примера предлагалась простейшая замкнутая система регулирования уровня жидкости в потоке с отрицательной обратной связью, включающей объект управления (ОУ) в виде инерционного звена 1-го порядка с запаздыванием и управляющего устройства (УУ), представляющего ПИ-регулятор (см. рис. 1). Регулируется уровень потока h путём изменения положения S регулируемого шибера.

Рис. 1. Схема системы регулирования уровня жидкости

Обучающиеся должны из соответствующих блоков в палитре приложения создать модель системы, исследовать переходный процесс, подобрать такие коэффициенты передачи, постоянные времени интегрирования, которые бы уменьшили время переходного процесса и размах колебаний при запуске системы регулирования уровня. Параметры kр - передаточный коэффициент регулятора; Ти - время интегрирования были настроечными. hЗ - задаваемый уровень потока. Моделирование процесса начиналось с составления дифференциального уравнения и получения передаточных функций объекта управления (Wo-(p)) и управляющего устройства (Wр-(p)). После работы в программе по полученному графику переходного процесса необходимо было удостовериться в правильности указанных настроечных параметров регулятора k р и Tи. Подбирая параметры, оптимизировали переходный процесс.

Метод тестирования. Кафедрой разработаны комплекты тестовых заданий на компьютерах, содержащие сотни задач по разделам общетехнических дисциплин. Они предлагаются студентам для проверки усвоения материала после прохождения каких-то разделов технических дисциплин в течение семестра. Эти задачи требуют проведения некоторого исследования и довольно длительного расчета. В компьютерном классе кафедры тестирование по отдельным темам помогает овладению учебным материалом.

Таким образом, формируются такие профессиональные компетенции как ПК-1, ПК-2, ПК5, ПК-6, необходимые, например, для квалификации бакалавров направления «Строительство».

Общекультурные компетенции также должны формироваться при изучении технических дисциплин. Умение логически верно, аргументировано строить устную речь (ОК-2), культура мышления, постановка цели, саморазвитие, повышение квалификации (ОК-1, ОК-6), организационные способности, работа в коллективе. Для развития навыков грамотной устной речи и преодоления страха публичного выступления, к примеру, в процессе изучения курса «Техническая механика» каждому обучающемуся предлагают подготовить реферат и выступить с презентацией на выбранную тему. Студентов знакомят с правилами создания слайдов для презентации и оговаривают время выступления. Приведем несколько тем докладов, связанных с будущей профессиональной деятельностью в области машиностроения: методы и средства защиты от вибраций автомобилей; техника безопасности на производстве; вибрация и защита от нее, вибродемпфирование.

Результаты. Выводы

В наших вузах применяется сто-балльная оценка результатов промежуточной аттестации. Приведем несколько результатов. Средний балл по группе за курсовую работу по теоретической механике (в группах, где ежегодно увеличивалась доля активных и интерактивных методов): 1-й год - 71,2 балла, 2-й год - 75,4 балла, 3-й год - 76,2 балла. Приблизительно такая же динамика прослеживается и в экзаменационных оценках по теоретической механике. Средний балл за зачет по технической механике: 1-й год - 75,9 балла, 2-й год - 79,7 балла, 3-й год - 88,3 балла. В группе с преобладанием пассивных средств обучения результаты в течение трех лет оставались примерно одинаковыми: 70-73 балла за курсовую работу, 70 -75 за зачет по технической механике. Средний балл по группе за зачет по моделированию в технике: 1-й год - 68,3 балла, 2-й год - 76,4 балла, 3-й год - 78,2 балла. На рисунке 2 приведены средние значения результатов за последние три учебных года по сравнению с 2013-14 учебным годом (преобладал пассивный метод обучения) по некоторым техническим дисциплинам.

Рис.2. Ряд 1 - моделирование в технике, ряд 2 - теоретическая механика, ряд 3 - техническая механика

Таким образом, можно констатировать улучшение результатов обучения по всем дисциплинам, но особенно заметны изменения по технической механике, где средний балл за 3 года составил 81,3, а по отношению к среднему значению прирост в третьем году - 8,6 %. И хотя по остальным дисциплинам результаты более скромные, можно предположить, что использование активных и интерактивных подходов в преподавании дает возможность эффективнее приблизиться к выполнению требований федеральных государственных образовательных стандартов. Использование инновационных технологий требует от преподавателя значительной методической работы: подготовка карточек, заданий, слайдов, методичек. Все это способствует более высокому уровню усвоения учебного материала. Кроме того, достичь этого можно и решением нестандартных задач, участием во внутривузовских, городских и региональных олимпиадах, например, по теоретической механике, в которых активно участвуют студенты нашего вуза. Основные результаты в формировании общекультурных компетенций следующие: студенты стали более активны в образовательном процессе, получили навык работы в команде. В дальнейшем планируется распространение опыта использования новых методов обучения на такие дисциплины, как «Мехатроника» для магистров, «Аналитическая механика», «Сопротивление материалов».

Библиографическая ссылка

Раевская Л.Т., Карякин А.Л. ИННОВАЦИОННЫЕ ТЕХНОЛОГИИ В ПРЕПОДАВАНИИ ТЕХНИЧЕСКИХ ДИСЦИПЛИН // Современные проблемы науки и образования. – 2017. – № 5.;
URL: http://science-education.ru/ru/article/view?id=26753 (дата обращения: 26.11.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»