Современные проблемы науки и образования. Планирование "преподавание технической механики" Методы модульного обучения технической механики

1

Реализация требований основной образовательной программы бакалавриата предполагает сформированность у выпускников определенных компетенций. В настоящей работе исследуется влияние на результаты обучения пассивных, активных и интерактивных средств обучения. Сравниваются группы с разными подходами в преподавании таких дисциплин как «Теоретическая механика», «Техническая механика», «Моделирование в технике». Результаты промежуточных аттестаций по техническим дисциплинам отслеживались в течение нескольких лет. Если говорить об овладении теоретическим материалом, то результаты экзаменов и курсовых работ показали рост оценок в баллах примерно на 3 %. Однако в области решения практических задач результаты примерно на 8–9 % выше в группах, где использовались инновационные педагогические технологии. Кроме того, были сформированы у студентов навыки поиска информации, способности к коммуникации в устной и письменной формах, работы в коллективе.

технические дисциплины

формирование компетенций

интерактивные методы обучение

1. Проектирование основных образовательных программ вуза при реализации уровневой подготовки кадров на основе федеральных государственных образовательных стандартов / под ред. С.В. Коршунова. – М.: МИПК МГТУ им. Н.Э. Баумана, 2010. – 212 с.

2. Раевская Л.Т. Профессиональные компетенции при изучении теоретической механики /Л.Т. Раевская // Образование и наука: современное состояние и перспективы развития: сборник научных трудов по материалам Международной научно-практической конференции 31 июля 2014 г.: в 6 ч. Ч. 1. – Тамбов: ООО «Консалтинговая компания Юком», 2014. – С. 143-144.

3. Будерецкая И.В. Интерактивные методы обучения //Материалы семинара «Интерактивные методы и инновационные технологии обучения в образовательном процессе» [Электронный ресурс]. – URL: http://nsportal.ru/nachalnaya-shkola/materialy-mo/2013/12/21/interaktivnye-metody-obucheniya (дата обращения: 09.06.2017).

4. Татур Ю.Г. Образовательный процесс в вузе: методология и опыт проектирования: учеб. пособие /Ю.Г. Татур. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2009. – 262 с.

5. Рогова Е.М. Особенности организации процесса обучения на основе кейс-метода. Методическое пособие / под ред. М.А. Малышевой / Современные технологии обучения в вузе (опыт НИУ ВШЭ в Санкт-Петербурге). – Отдел оперативной полиграфии НИУ ВШЭ – Санкт-Петербург, 2011. – 134 c.

В федеральных государственных образовательных стандартах высшего образования обязательным требованием к результатам освоения программы бакалавриата является сформированность определенного набора компетенций. В понятие компетенции входят модули - знания, умения и навыки, и личностные качества. «Модульная образовательная программа - совокупность и последовательность модулей, направленная на овладение компетенциями, необходимыми для присвоения квалификации» .

Инновационные технологии - это те, которые предполагают не столько освоение дисциплины, сколько формирование компетенций, для чего используют активные и интерактивные методы обучения. К таким технологиям относятся, например, информационно-коммуникационные технологии (привлечение информатики в изучение технических дисциплин), личностно-ориентированные технологии (развивающие природные данные обучающихся, коммуникативные способности), дидактические (использование новых приемов, методов в учебном процессе) и др.

С первых встреч с обучающимися преподаватели технических дисциплин должны обеспечить конкретное понимание целей изучения дисциплины, вклад данной дисциплины в формирование компетенций. Для этого образовательная программа должна обеспечивать в большей части проблемный, исследовательский характер обучения, мотивируя будущих выпускников на приобретение требуемых компетенций. Принято выделять несколько основных методов организации занятий, используемых преподавателями в своей области . Пассивный метод - это форма взаимодействия преподавателя и обучающегося, при которой преподаватель является основным действующим лицом, управляющим ходом занятия, а обучающиеся выступают в роли пассивных слушателей. Мы не считаем, что надо полностью отказаться от пассивного метода. Вопрос в соотношении, в доле пассивных способов во всем процессе познания. Этот метод не должен превалировать.

Активный метод обучения - это организации учебного процесса, которая способствует более активному, чем при пассивном способе, взаимодействию с преподавателем. Если пассивные методы предполагали авторитарный стиль взаимодействия, то активные предполагают демократический стиль. При этом преподавателю «приходится пересмотреть традиционную методику преподавания, когда в аудитории есть только привычные доска и мел» .

Интерактивный метод. Сегодня недостаточно быть компетентным только в своей области и уметь передавать определенную сумму знаний обучающимся. В настоящее время преподавателю необходимо организовать процесс таким образом, чтобы вовлекать в получение знаний самих студентов, чему способствуют активные, а еще больше - интерактивные методы обучения. Известно, что обучающиеся легче понимают и запоминают материал, который они изучали посредством активного вовлечения в учебный процесс. Интерактивный метод - это «замыкание» студентов на себя. Главное - общение студентов между собой в процессе получения знаний. Роль преподавателя на интерактивных занятиях сводится к направлению деятельности обучающихся на достижение целей занятия. Интерактивное обучение - это прежде всего диалоговое обучение.

Форм активного и интерактивного обучения много, напомним лишь о некоторых из них: творческие задания, лекции с ошибкой, мозговой штурм, конференции с презентацией докладов и обсуждением, учебная дискуссия, обучение с помощью компьютерных программ, метод кейсов. Метод кейсов можно представить как сложную систему, в которую включены и другие, более простые методы познания. В него входят моделирование, системный анализ, проблемный метод, мысленный эксперимент, имитационное моделирование, методы классификации, игровые методы, которые выполняет в кейс-методе свои роли . Приобретение компетенций основано на деятельности. А значит сама возможность усвоения знаний, навыков, умений зависит от активности обучающихся. Правильно организовать эту активность - задача преподавателя высшего учебного заведения.

Цели исследования

Многолетние наблюдения учебного процесса выявили все более и более слабую математическую подготовку поступающих, отсутствие самостоятельности и интереса к учебе, желание по любому поводу искать ответ в интернете, неумение сосредоточиться, страх публичных выступлений и отсутствие терпимости к высказываниям других. Все это и стимулировало поиск каких-то новых подходов к работе с нынешними обучающимися.

В процессе обучения необходимо обращать внимание в первую очередь на те методы, при которых слушатели идентифицируют себя с учебным материалом, включаются в изучаемую ситуацию, побуждаются к активным действиям, переживают состояние успеха и соответственно мотивируют свое поведение. Например, дискуссия в малых группах дает шанс каждому участнику внести что-то свое в обсуждение, почувствовать независимость от преподавателя, проявить лидерские качества, повторить материал. И хотя новые взгляды на обучение не всеми преподавателями принимаются как руководство к изменению собственных шаблонов преподавания, поиску интерактивных способов взаимодействия с группой, нельзя игнорировать данные исследований, подтверждающих, что использование активных подходов является эффективным способом обучения.

Целью нашего экспериментального исследования было определение возможности и эффективности использования активных и интерактивных форм при обучении техническим дисциплинам. Задачи исследования ставились следующие: в течение трех лет проводить мониторинг результатов промежуточных аттестаций по нескольким техническим дисциплинам в ряде групп; в нескольких группах постепенно год от года увеличивать долю активных и интерактивных подходов как в лекциях, так и в практических и лабораторных занятиях; в одной группе проводить традиционные занятия по техническим дисциплинам; провести сравнительный анализ результатов промежуточных аттестаций в группах с большой долей активных методов и в группе традиционного обучения в течение трех лет; собрать по возможности информацию об основных наиболее эффективных методах. Занятия во всех группах вел один и тот же преподаватель.

Методы исследования

Исходя из целей исследования, были выбраны группы направлений 08.03.01. «Строительство», 13.03.02. «Электроэнергетика и электротехника» (профиль бакалавриата), с которыми работали авторы данной статьи. Активные формы взаимодействия использовались нами в преподавании таких дисциплин, как «Теоретическая механика», «Техническая механика», «Моделирование в технике». Теоретическая механика изучается в третьем семестре, студенты сдают экзамен и курсовую работу с оценкой. Техническая механика дается в четвертом семестре, в результате студенты должны получить зачет. Курс «Моделирование в технике» читается бакалаврам третьего года обучения, промежуточная аттестация - зачет.

Были отобраны несколько методов.

Метод мозгового штурма использовался главным образом на лекции. Лекции обязательно содержали проблемные вопросы, ответ на которые предлагалось найти этим методом. В теоретической механике, например, надо было определить число неизвестных реакций опор в статике, сформулировать понятие вектор-момента или порядка решения задач. В курсе технической механики при первом знакомстве с группами Ассура, предлагалось вычислить класс заданной группы Ассура, смоделировать группу 4-го класса с последующим выступлением перед всей аудиторией, в котором надо было обосновать свой выбор. В лекции по дисциплине «Моделирование в технике» после объяснения классификации видов моделирования предлагалось дать характеристику программе CFD- моделирование (computational fluid dynamics), которая воспроизводит на компьютере процесс обтекания объекта какой-либо жидкостью или газом (что демонстрировалось показом слайдов). Необходимо было ответить на вопросы: реальная или мысленная модель, динамическая или статическая, дискретная или непрерывная и т.д.

Метод «творческое задание» помогал развить исследовательские навыки обучающихся. Такие задания студенты получали после знакомства с основными подходами к формализации и моделированию равновесия и движения материальных тел. Например, в теоретической механике в задачах раздела «Статика» предлагали первокурсникам не просто вычислить реакции связей, но и найти их зависимость от вида связей. После небольшого исследования они должны сделать вывод о преимуществах тех или иных опор. В разделах «Кинематика» и «Динамика» студенты разными методами решают одну и ту же задачу, что расширяет их кругозор, помогает повторить материал и формирует навыки решения задач. В технической механике надо было провести сравнительный анализ методов решения статически неопределимых задач. Предлагались к рассмотрению балочно-стержневые конструкции, решение следовало провести энергетическим методом и методом сравнения деформаций и обосновать преимущества того или иного метода.

Метод кейсов (Case-study) - это предложение группе конкретной ситуации с целью поиска решения, обоснования данного решения с подробным анализом поиска решения. Представилось возможным использовать метод кейсов в преподавании технических дисциплин для работы в малых группах. Деятельность в малых группах - это одна из самых результативных стратегий, так как она дает всем студентам возможность участвовать в работе, практиковать навыки сотрудничества, межличностного общения (в частности, умение активно слушать, вырабатывать общее мнение, разрешать возникающие разногласия). К примеру, первокурсникам, приступившим к изучению теоретической механики, предлагались задания типа - «Два груза массами m1=m кг и m2=3m кг, соединенные невесомой нерастяжимой нитью, необходимо поднять и перенести. Один рабочий предложил поднимать груз, взявшись за первый груз, второй рабочий предложил держаться за второй груз при подъеме, а третий сказал, что неважно, за какой из грузов держаться, это не приведет к разрыву нити между грузами. Кто прав? В какой ситуации меньше вероятность разрыва нити, если в любом случае для подъема прикладывается одна и та же сила F к соответствующему грузу?» В начале занятия обсуждали принципы работы в группе: занятие - не лекция, предполагается общая работа с участием каждого студента в группе; все участники равны независимо от возраста, социального статуса, опыта; каждый участник имеет право на собственное мнение по любому вопросу; нет места прямой критике личности (подвергнуться критике может только идея).

Время обсуждения задания и решения ограничивалась 30-40 минутами. После чего представитель каждой группы делал небольшое сообщение в соответствии с листингом вопросов, которые надо было осветить. Вопросы включали не только результат решения, но и анализ процесса поиска решения. После выступления всех групп преподавателем подводились итоги с указанием на распространенные ошибки, делались выводы.

Метод «Компьютерная симуляция» применялся в преподавании дисциплины «Моделирование в технике». Студентам, например, предлагались задания по моделирования технологического процесса с помощью средств визуализации. Предлагалось диагностировать переходный процесс при запуске устройства, после чего методом подбора параметров оптимизировать переходный процесс. Группа разбивалась на подгруппы по 2 студента. Были поставлены цели: 1) ознакомление с инструментальными приложениями программного пакета Scilab, получение навыков первоначальной работы с системой визуального моделирования Xcos; 2) исследование на ЭВМ динамических свойств объекта. В качестве примера предлагалась простейшая замкнутая система регулирования уровня жидкости в потоке с отрицательной обратной связью, включающей объект управления (ОУ) в виде инерционного звена 1-го порядка с запаздыванием и управляющего устройства (УУ), представляющего ПИ-регулятор (см. рис. 1). Регулируется уровень потока h путём изменения положения S регулируемого шибера.

Рис. 1. Схема системы регулирования уровня жидкости

Обучающиеся должны из соответствующих блоков в палитре приложения создать модель системы, исследовать переходный процесс, подобрать такие коэффициенты передачи, постоянные времени интегрирования, которые бы уменьшили время переходного процесса и размах колебаний при запуске системы регулирования уровня. Параметры kр - передаточный коэффициент регулятора; Ти - время интегрирования были настроечными. hЗ - задаваемый уровень потока. Моделирование процесса начиналось с составления дифференциального уравнения и получения передаточных функций объекта управления (Wo-(p)) и управляющего устройства (Wр-(p)). После работы в программе по полученному графику переходного процесса необходимо было удостовериться в правильности указанных настроечных параметров регулятора k р и Tи. Подбирая параметры, оптимизировали переходный процесс.

Метод тестирования. Кафедрой разработаны комплекты тестовых заданий на компьютерах, содержащие сотни задач по разделам общетехнических дисциплин. Они предлагаются студентам для проверки усвоения материала после прохождения каких-то разделов технических дисциплин в течение семестра. Эти задачи требуют проведения некоторого исследования и довольно длительного расчета. В компьютерном классе кафедры тестирование по отдельным темам помогает овладению учебным материалом.

Таким образом, формируются такие профессиональные компетенции как ПК-1, ПК-2, ПК5, ПК-6, необходимые, например, для квалификации бакалавров направления «Строительство».

Общекультурные компетенции также должны формироваться при изучении технических дисциплин. Умение логически верно, аргументировано строить устную речь (ОК-2), культура мышления, постановка цели, саморазвитие, повышение квалификации (ОК-1, ОК-6), организационные способности, работа в коллективе. Для развития навыков грамотной устной речи и преодоления страха публичного выступления, к примеру, в процессе изучения курса «Техническая механика» каждому обучающемуся предлагают подготовить реферат и выступить с презентацией на выбранную тему. Студентов знакомят с правилами создания слайдов для презентации и оговаривают время выступления. Приведем несколько тем докладов, связанных с будущей профессиональной деятельностью в области машиностроения: методы и средства защиты от вибраций автомобилей; техника безопасности на производстве; вибрация и защита от нее, вибродемпфирование.

Результаты. Выводы

В наших вузах применяется сто-балльная оценка результатов промежуточной аттестации. Приведем несколько результатов. Средний балл по группе за курсовую работу по теоретической механике (в группах, где ежегодно увеличивалась доля активных и интерактивных методов): 1-й год - 71,2 балла, 2-й год - 75,4 балла, 3-й год - 76,2 балла. Приблизительно такая же динамика прослеживается и в экзаменационных оценках по теоретической механике. Средний балл за зачет по технической механике: 1-й год - 75,9 балла, 2-й год - 79,7 балла, 3-й год - 88,3 балла. В группе с преобладанием пассивных средств обучения результаты в течение трех лет оставались примерно одинаковыми: 70-73 балла за курсовую работу, 70 -75 за зачет по технической механике. Средний балл по группе за зачет по моделированию в технике: 1-й год - 68,3 балла, 2-й год - 76,4 балла, 3-й год - 78,2 балла. На рисунке 2 приведены средние значения результатов за последние три учебных года по сравнению с 2013-14 учебным годом (преобладал пассивный метод обучения) по некоторым техническим дисциплинам.

Рис.2. Ряд 1 - моделирование в технике, ряд 2 - теоретическая механика, ряд 3 - техническая механика

Таким образом, можно констатировать улучшение результатов обучения по всем дисциплинам, но особенно заметны изменения по технической механике, где средний балл за 3 года составил 81,3, а по отношению к среднему значению прирост в третьем году - 8,6 %. И хотя по остальным дисциплинам результаты более скромные, можно предположить, что использование активных и интерактивных подходов в преподавании дает возможность эффективнее приблизиться к выполнению требований федеральных государственных образовательных стандартов. Использование инновационных технологий требует от преподавателя значительной методической работы: подготовка карточек, заданий, слайдов, методичек. Все это способствует более высокому уровню усвоения учебного материала. Кроме того, достичь этого можно и решением нестандартных задач, участием во внутривузовских, городских и региональных олимпиадах, например, по теоретической механике, в которых активно участвуют студенты нашего вуза. Основные результаты в формировании общекультурных компетенций следующие: студенты стали более активны в образовательном процессе, получили навык работы в команде. В дальнейшем планируется распространение опыта использования новых методов обучения на такие дисциплины, как «Мехатроника» для магистров, «Аналитическая механика», «Сопротивление материалов».

Библиографическая ссылка

Раевская Л.Т., Карякин А.Л. ИННОВАЦИОННЫЕ ТЕХНОЛОГИИ В ПРЕПОДАВАНИИ ТЕХНИЧЕСКИХ ДИСЦИПЛИН // Современные проблемы науки и образования. – 2017. – № 5.;
URL: http://science-education.ru/ru/article/view?id=26753 (дата обращения: 26.11.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Задачи, легкие или сложные, хорошие или не очень, требующие решения, преследуют любое живое биологическое существо постоянно. Часто в разговорах, в спорах, в размышлениях я вспоминаю следующую ситуацию из детства: кошка нашла по жалобному мяуканью котенка, провалившегося за ящик. Расстояния были не более 70мм между ящиком и стеной с двух граней, между ящиком и основанием, остальные грани свободные. Мгновенно сообразив, кошка распласталась, полезла под ящик, прихватив одной лапой детеныша-неудачника, вытащила котенка. Затем легла на бок, положила котенка на лапы, а верхними лапами била непослушного, на что наказуемый, мяукая, просил прощения (жаль, что бумага не изображает звука). Пример приведен мною для доказательства, что жизнь сама заставляет творчески (креативно) мыслить любое биологическое существо, потому что надо жить и выжить не толькобиологической (социальной) единице, но и ее потомству (государству).

Человеческая деятельность всегда требовала творческого мышления. Анализируя свое окружение, человечество изучило колоссальное число систем, нашло множество связей между системой и ее надсистемой, наднадсистемой, подсистемой, подподсистемой и т.д. и изобрело множество методик решения сложных и хороших задач, объединенных в настоящее время в единую теорию решения изобретательских задач (ТРИЗ). Ее разработка и распространение связаны с именем инженера-изобретателя, писателя-фантаста Г. С. Альтшуллера

ТРИЗ развивает системный и диалектический образ мышления, применимый к любым жизненным ситуациям. ТРИЗ - это наука о творчестве. Основным теоретическим положением ТРИЗ является утверждение, что технические системы развиваются по объективным, познаваемым законам, которые выявляются путем изучения больших массивов научно-технической информации и истории техники.

Основными особенностями ТРИЗ являются: использование закономерностей развития систем; выявление и разрешение противоречий, возникающих при развитии систем; систематизация различных видов психологической инерции; использование методов ее преодоления, развитие многоэкранного (системного) стиля мышления, использование специальных системных операторов, методика поиска ресурсов (вещественных, энергетических, информационных и др.), структурирование информации о проблемной ситуации, специальное информационно-методическое обеспечение.

В статье описан пример использования методов ТРИЗ Г. С. Альтшуллера в обучении студентов технической механике. Тренинг как интенсивное обучение с практической направленностью был выбран в качестве технологии проведения занятия. Структура тренинга включает в себя блоки, реализующие цели занятия, адекватные целям креативного образования в целом .

Блок 1. Мотивация. К инженеру завода, выпускающего мини-тракторы, после сдачи стандартных тестовых заданий на профессиональную пригодность, пришли на собеседование трое молодых претендентов, получивших одинаковое количество высоких баллов. К счастью или к несчастью, оказалось, что трое молодых людей оказались знакомы друг с другом. Сославшись на вызов управляющего на один час, инженер попросил претендентов (по желанию) помочь решить одну проблему, результат которого будет влиять на прием одного из претендентов на очень высокооплачиваемую работу. Проблема состояла в следующем: перед входом в высотное здание, где находился административный блок предприятия, требовалось установить макет мини-трактора. Вес мини-трактора 1200 кг. Принимается любое техническое решение данной проблемы.

Покажите хоть одного человека (даже лен-н-н-нивого), не желающего работать с высокой зарплатой?

Задача - проблема есть и каждый студент (претендент) на занятии ищет свой алгоритм решения задачи, используя свой уровень творческого мышления. Начинаем творить чудеса. Думаем и творим, творим и думаем. Системное мышление, строго учитывающее все положения системного подхода - всесторонность, взаимоувязанность, целостность, многоаспектность, учитывающее влияние всех значимых для данного рассмотрения систем и связей нерасчлененного, синкретического мышления. С точки зрения системного подхода объекты, входящие в данную систему, должны рассматриваться и сами по себе, и в связи со многими объектами и явлениями. Достаточно выделить только наиболее устойчивые связи, непосредственно и значительно влияющие на решение поставленной задачи и поддающиеся реальной оценке.

Задача преподавателя, заключается в поддержке и развитии творческого мышления, в преодолении психологических барьеров у студентов, в умелом применении методов научного творчества. Формулирую ненавязчиво вопросы - подсказки: «Обозначить в решаемой задаче надсистему - систему - подсистему»; «Какие функции несут надсистема - система - подсистема?»; «Что требуется изменить для решения задачи: надсистему - систему - подсистему и как это сделать?» и т.д. Итогом этого блока должны быть идеи студентов для решения поставленной задачи в любой форме: выполнение эскизов, выявление и разрешение противоречий, возникающих при развитии системы. Наблюдаю, помогаю без афиширования, даю возможность на негласную подсказку продолжением занятия.

Блок 2. Содержательная часть 1. Основание для установки макета мини - трактора, допустим, был утвержден со сверх-эффектом: в пространство основания было решено ставить велосипеды сотрудников (сообразительным подсказка). В ходе конструирования был принят вариант, где несущие элементы работали на сжатие.

Сжатием называется такой вид нагружения, при котором в сечении бруса возникает только один внутренний силовой фактор - продольная сила, обозначается буквой N, размерность в ньютонах,Н. Нормальным напряжением называется продольная сила, приходящаяся на единицу площади, обозначается буквой σ (сигма), размерность в ньютонах на квадратный миллиметр, Н/мм 2 .

Условие прочности при сжатии:

σ = N/А ≤ | σ |;

где σ - расчетное напряжение, Н/мм 2 ;

N - сжимающая продольная сила, Н;

А - площадь поперечного сечения, мм 2 ;

| σ | - допускаемое напряжение материала, Н/мм 2 .

Суть сжатия или растяжения: действуя на брус вдоль продольной оси, проходящей через центр тяжести поперечного сечения бруса, внешняя сила - действие вызывает противодействие - внутренний силовой фактор, названной продольной силой N. Значит, внутренний силовой фактор - это сила, возникающая в самом материале только от действия внешней силы. Разнообразие материалов в природе подтверждается их внутренним строением, различными силами притяжения и отталкивания молекул вещества.

Совсем маленькая стартовая площадка для творческого мышления при расчете на сжатие: определение площади поперечного сечения и подбор материала детали.

В вышеуказанном теоретическом материале доминирует инерция привычных, специальных терминов.

Из условия прочности находим требуемую площадь поперечного сечения, приравняв расчетное напряжение допускаемому напряжению материала:

А тр = N/ | σ |;

Допустим А тр = 18 см 2 .

Требуется определить стойку из стандартных металлических профилей: швеллера, балки двутавровой и уголка равнополочного.

По ГОСТ 8240-89 «Швеллеры» подбираем швеллер № 16 с площадью поперечного сечения равным А=18,1 см 2 , что больше А тр = 18 см 2 .

По ГОСТ 8239-89 «Балки двутавровые» подбираем балку двутавровую № 16 с площадью поперечного сечения равным А=20,2см 2 ,что больше А тр = 18 см 2 .

По ГОСТ 8509-89 «Сталь прокатная уголки равнополочные» подбираем уголок равнополочный № 10 с площадью поперечного сечения равным А=19,24см 2 ,что больше А тр = 18 см 2 .

Какой вариант самый экономичный? Почему? (Экономичным вариантом будет вариант стойки из швеллера № 16).

Блок 3. Интеллектуальная разминка.
1. Прочитав стихотворение, определить время года

Молчание текло,

Прошел страстей накал,

И солнце не пекло,

И горек запах трав,

Забвение пришло. (Осень).
2. «Она пошла - ее съели» - что или кто это? (Шахматная пешка).
3. Давайте будем устраиваться на работу. Пришел инженер и готов внимательно выслушать ваши решения поставленной проблемы. Условия следующие: объяснять жестами и говорить, свернув губы вовнутрь рта. Пробуем объяснить друг другу.

Блок 4. Содержательная часть 2. Основание для установки макета мини - трактора был утвержден со сверх-эффектом: в пространство основания было решено запроектировать киоск продажи периодической печати. В ходе конструирования был принят вариант, где несущие элементы работали на продольный изгиб (сжатие с изгибом).

Суть продольного изгиба в следующем: действуя на стержень вдоль продольной оси, проходящей через центр тяжести поперечного сечения стержня, внешняя сила одновременно сжимает и изгибает стержень. Условие устойчивости сводится к определению критической силы:

где F - сжимающая сила, Н;

Fкр - критическая сила, Н;

|s| - допускаемый коэффициент запаса прочности

Наибольшее значение сжимающей силы, при которой прямолинейная форма стержня сохраняет устойчивость, называется критической силой.

Методика решения задач на устойчивость стержней большой гибкости была предложена математиком Л. Эйлером в 1744 году. Дополнения внес Ф. О. Ясинский для расчета стержней средней гибкости.

В вышеуказанном теоретическом материале также доминирует инерция привычных, специальных терминов.

Блок 5. Головоломка. Каждый группа из 6-10 студентов, предварительно проанализировав и смоделировав систему, предлагают общую модель через основные шаги моделирования:

а) понять задачу;

б) понять работу системы и определить части (подсистемы), участвующие в выполнении Главной функции;

в) определить связи между этими частями.

Для принятия модели используем мозговой штурм - метод активизации творческого мышления, основанного:

а) на групповом выдвижении альтернативных идей с их оценкой и развитием скрытых в них возможностей;

б) на предположении, что при обычных условиях обсуждения и решения проблем возникновению творческих идей препятствуют контрольные механизмы сознания, которые сковывают поток идей под давлением различных видов психологической инерции.

При проведении мозгового штурма ведущий - я соблюдаю правила подготовительного и, особенно, генерующего этапа:

а) запрет критики;

б) запрет обоснования выдвигаемых идей;

в) поощрение всех идей, даже нереальных и фантастических.

При проведении мозгового штурма использую специальные приемы активизации мышления: списки наводящих вопросов, расчленение, простое изложение, неожиданные ассоциации, освобождение от терминологии.

Блок 6. Компьютерная интеллектуальная разминка. После коллективного обсуждения поставленной задачи прошу перейти к компьютерам и перенести принятый вариант персонально на компьютер (наличие Интернета обязательно).

Блок 7. Резюме. Продолжим коллективно предложение: «Инженер завода возьмет на работу такого работника, который...». Обсуждаем самые креативные варианты, выбранные голосованием и варианты самовыдвиженцев.

Кому понравилось занятие, тот поднимает карточку с улыбающейся рожицей, посчитали. Подведем итоги.

В ходе нашей опытно-экспериментальной работы выявлено положительное влияние предложенных адаптированных методов научного творчества на профессиональные компетенции обучающихся, в части на развитие креативности. Это позволяет говорить о необходимости дальнейшей работы по адаптации методов научного творчества для преподавания технической механики.

  1. Зиновкина М. М., Утёмов В. В. Структура креативного урока по развитию творческой личности учащихся в педагогической системе НФТМ-ТРИЗ // Современные научные исследования. Выпуск 1. - Концепт. - 2013. - ART 53572. - URL: http://e-koncept.ru/article/964/ - Гос. рег. Эл № ФС 77- 49965. - ISSN 2304-120X.
  2. Утёмов В. В. Адаптированные методы научного творчества в обучении математике // Концепт: научно-методический электронный журнал. - 2012. - № 7 (июль). - ART 12095. - 0,5 п. л. - URL: http://www.covenok.ru/koncept/2012/12095.htm. - Гос. рег. Эл № ФС 77-49965. - ISSN 2304-120X

Musina Maira Saitovna,

[email protected]

Adapted methods of scientific work in the training of technical mechanics.

Annotation. The article considers the training of creative thinking in the training of technical mechanics. The author describes the methods of scientific creativity theory of inventive problem solving is given block description of one of the sessions of the training.

Key words: theory of inventive problem solving, systems thinking, creativity, mental inertia, brainstorming.

Продолжая тему прошлого урока, мы хоти познакомить вас с теми методами обучения, которые появились относительно недавно и активное внедрение которых в педагогический процесс только начинает осуществляться. Если говорить о традиционной образовательной системе, то в соответствующих ей учреждениях современные методы обучения можно встретить крайне редко, но что касается частных школ, тренинг-центров и других подобных организаций, то в их деятельности новые методики появляются всё чаще. О том, почему этим методам приписывают большую эффективность, нежели традиционным методам, вы узнаете из этого урока. Но кроме преимуществ, мы упомянем и основные недостатки инновационных методов, на которые следует обратить не меньшее внимание.

Для начала отметим, что современные методы обучения, в отличие от традиционных, характеризуются несколько иными признаки, а именно:

  • Современные методы обучения уже в процессе разработки адаптируются под особый педагогический замысел. В основе разработки лежит конкретный методологический и философский взгляд автора
  • Технологическая последовательность действий, операций и взаимодействий базируется на целевых установках, представляющих собой чёткий ожидаемый результат
  • Реализация методов предполагает связанную деятельность педагогов и учащихся, которая имеет договорную основу и в которой учитываются принципы дифференциации и индивидуализации, а также оптимальное использование человеческого и технического потенциала. Обязательными составляющими должно быть общение и диалоги
  • Педагогические методы планируются поэтапно, а воплощаются последовательно. Кроме того, они должны быть выполнимы любым педагогом, но гарантировать каждым учащимся
  • Непременной составляющей методов являются процедуры по диагностике, которые содержат в себе необходимые для измерения результатов деятельности учащихся инструменты, показатели и критерии

Современные методы обучения во многих случаях могут не обладать психолого-педагогическим обоснованием, по причине чего классифицировать их каким-то единым образом довольно сложно. Но это не мешает не только применять их в учебной деятельности, но и не оказывает никакого существенного воздействия на успешность этого применения.

Современные методы обучения

Среди наиболее востребованных сегодня современных методов обучения можно выделить:

Лекция

Лекция является устной формой передачи информации, в процессе которой применяются средства наглядности.

Преимущества лекции состоят в том, что учащиеся ориентируются в больших массивах информации, на занятиях присутствует, как правило, большое количество учащихся, а педагог может легко осуществлять контроль над содержанием и последовательностью своего изложения.

К недостаткам лекции можно отнести то, что отсутствует обратная связь от учащихся, нет возможности учесть их изначальный уровень знаний и навыков, а занятия жёстко зависят от расписаний и графиков.

Семинар

Семинар представляет собой совместное обсуждение педагогом и учащимися изучаемых вопросов и поиск путей решения определённых задач.

Преимущества семинара заключаются в возможности учитывать и контролировать педагогом уровень знаний и навыков учащихся, устанавливать связь между темой семинара и имеющимся у учащихся опытом.

Недостатками семинара считаются небольшое количество учащихся на занятии и требование к наличию у педагога .

Тренинг

Тренинг - это такой метод обучения, основой которого является практическая сторона педагогического процесса, а теоретический аспект имеет лишь второстепенное значение.

Преимущества тренинга состоят в возможности изучить проблему с разных точек зрения и уловить её тонкости и нюансы, подготовить учащихся к действиям в жизненных ситуациях, а также повысить их и создать положительный эмоциональный климат.

Главным и основным недостатком тренинга является то, что по его окончании учащиеся должны сопровождаться и получать поддержку, иначе приобретённые навыки и умения будут утрачены.

Модульное обучение

Модульное обучение - это разбивка учебной информации на несколько относительно самостоятельных частей, называемых модулями. Каждый из модулей предполагает свои цели и методы подачи информации.

Положительные характеристики метода модульного обучения заключаются в его избирательности, гибкости и возможности перестановки его слагающих - модулей.

Отрицательные стороны состоят в том, что учебный материал может быть усвоен разрозненно и станет нецелостным. Также может потеряться логическая связь информационных модулей, вследствие чего знания будут фрагментированными.

Дистанционное обучение

Под дистанционным обучением понимается применение в педагогическом процессе телекоммуникационных средств, позволяющих педагогу обучать учеников, находясь от них на большом расстоянии.

Положительными характеристиками метода являются возможность вовлечения большого числа учащихся, возможность обучения на дому, возможность выбора учащимися наиболее для занятий и возможность переносить результаты процесса обучения на различные электронные носители.

Недостатками здесь можно назвать высокие требования к технической оснащённости педагогического процесса, отсутствие визуального контакта педагога и учащегося и, как следствие, пониженную мотивацию со стороны последнего.

Ценностная ориентировка

Метод ценностной ориентировки служит для привития ценностей учащимся и ознакомления их с социальными и культурными традициями и правилами. Обычно в процессе работы используются и инструменты, отражающие эти правила и традиции.

Положительные характеристики ценностной ориентировки - это её содействие адаптации учащихся к условиям реальной жизни и требованиям общества или деятельности.

Слабый момент метода выражается в том, что учащийся, если педагог приукрасил какие-либо моменты, может разочароваться в полученной информации, когда столкнётся с действительным положением вещей.

Кейс-стади

Разбор «завалов»

Метод разбора «завалов» заключается в моделировании ситуаций, которые часто возникают в реальной жизни и отличаются большим объёмом работ, а также в выработке наиболее эффективных способов решения задач, обусловленных такими ситуациями.

С положительной стороны представленный метод отличает высокая мотивация учащихся, их активное участие в процессе решения проблем и воздействие, развивающее аналитические способности и системность мышления.

Недостатком можно назвать то, что учащиеся должны обладать хотя бы базовыми навыками и умениями, позволяющими решать поставленные задачи.

Работа в парах

Исходя из требований метода парной работы, один учащийся составляет пару с другим, тем самым гарантируя получение обратной связи и оценки со стороны в процессе освоения новой деятельности. Как правило, обе стороны обладают равноценными правами.

Работа в парах хороша тем, что позволяет учащемуся получить объективную оценку своей деятельности и прийти к пониманию своих недостатков. Кроме того, развиваются навыки коммуникации.

Недостаток заключается в возможности затруднений в связи с личностной несовместимостью партнёров.

Метод рефлексии

Метод рефлексии предполагает создание необходимых условий самостоятельного осмысления материала учащимися и выработки у них способности входить в активную исследовательскую позицию по отношению изучаемому материалу. Педагогический процесс производится посредством выполнения учащимися заданий с систематической проверкой результатов их деятельности, во время которой отмечаются ошибки, трудности и наиболее успешные решения.

Плюсы рефлексивного метода заключаются в том, что у учащихся развивается навык самостоятельного принятия решений и самостоятельной работы, оттачивается и , повышается чувство ответственности за свои действия.

Но есть и минусы: сфера деятельности учащихся, представляющая собой проблематику изучаемой ими темы или дисциплины, ограничена, а получение и оттачивание происходит исключительно опытным путём, т.е. посредством .

Метод ротаций

Метод ротаций состоит в закреплении за учащимися в процессе занятия или урока разных ролей, благодаря чему они могут получить разносторонний опыт.

Плюсы метода заключаются в том, что он благоприятно отражается на мотивации учащихся, способствует преодолению негативных эффектов рутиной деятельности и расширению кругозора и круга общения.

Из минусов можно назвать повышенное напряжение учащихся в тех случаях, когда к ним предъявляются новые и незнакомые требования.

Метод «Лидер-ведомый»

Согласно этому методу, один учащийся (или группа) присоединяется к более опытному учащемуся (или группе) для того чтобы овладеть незнакомыми умениями и навыками.

Преимущества метода состоят в его простоте, более быстрой адаптации учащихся к новой деятельности и оттачивании коммуникативного навыка.

Сложность состоит в том, что учащийся не всегда способен осознать глубинные психологические причины принятия решений своим более опытным напарником.

Метод «Летучка»

Таким незамысловатым словом называется метод, в котором актуальные на данный момент времени вопросы касаемо изучаемой темы или проблемы решаются посредством обмена информацией и мнениями, вследствие чего появляется возможность повысить навыки учащихся.

Преимущества рассматриваемого метода заключаются в его привязке к реальным ситуациям в процессе обучения, а также в предоставлении учащимся возможности использовать при принятии решений эмоционально-волевой и содержательно-проблемный подход.

Недостатки же состоят в том, что педагогу или лидеру дискуссии нужно уметь заострять внимание на важных деталях и делать грамотные обобщения, которые он будет предлагать учащимся. Помимо этого, велика вероятность возникновения отвлечённых дискуссий, в том числе и имеющих негативную эмоциональную окраску.

Мифологемы

Метод мифологем подразумевает поиск необычных способов решения проблем, которые возникают в реальных условиях. Такой поиск проводится на основе метафор, другими словами, разрабатывается несуществующий сценарий, схожий с существующим.

Положительными характеристиками метода являются формирование в учащихся установки на творческий поиск решений проблем, и снижение уровня тревожности учащихся при их столкновении с новыми задачами и проблемами.

К отрицательным моментам относится пониженное внимание к и рациональным просчитанным действиям в реальных условиях.

Обмен опытом

Метод обмена опытом предполагает краткосрочный перевод учащегося в другое место обучения (включая и другие страны) и последующий возврат обратно.

Представленный опыт способствует сплочённости коллектива, повышению качества коммуникации и расширению кругозора.

Недостаток метода кроется в вероятности появления стрессовых ситуаций, обусловленных затруднениями личностного и технического плана на новом месте.

Мозговой штурм

Предполагает совместную работу в небольших группах, главной целью которой является поиск решения заданной проблемы или задачи. Идеи, предлагающиеся в начале штурма, собираются воедино, изначально без всякой критики, а на последующих стадиях обсуждаются, и из них выбирается одна наиболее продуктивная.

Мозговой штурм эффективен тем, что допускает к участию даже учащихся с минимальным уровнем знаний и набором компетенций, не требует к себе основательной подготовки, развивает в учащихся способность к оперативному мышлению и включению в групповую работу, оказывает минимальное стрессовое воздействие, взращивает культуру коммуникации и развивает навык участия в дискуссиях.

Но данный метод не очень эффективен для решения сложных проблем, не позволяет определить ясные показатели эффективности решений, усложняет процесс определения автора лучшей идеи, а также отличается спонтанностью, способной увести учащихся далеко от темы.

Тематические обсуждения

Метод тематических обсуждений заключается в решении определённых проблем и задач в конкретной области какой-либо дисциплины. Этот метод схож с мозговым штурмом, но отличается от него тем, что процесс обсуждения ограничен конкретными рамками, а любые, изначально кажущиеся бесперспективными решения и идеи сразу же отбрасываются.

Преимуществами метода можно назвать то, что расширяется информационная база учащихся относительно обсуждаемой дисциплины и формируется навык решения конкретных задач.

Недостатком можно назвать сложность поиска решения проблемы по причине того, что эта цель может быть достигнута, только если педагог или лидер обсуждения обладает навыком точного и развёрнутого донесения информации до менее информированных участников.

Консалтинг

Консалтинг или, как ещё называют метод, консультирование сводится к тому, что учащийся обращается за информационной или практической помощью к более опытному человеку по вопросам, касающимся конкретной темы или области исследования.

Положительная черта этого метода состоит в том, что учащийся получает адресную поддержку и повышает свой опыт, как в исследуемой области, так и в межличностном взаимодействии.

Отрицательная же сторона заключается в том, что метод не всегда применим, что зависит от специфики педагогической деятельности, и в ряде случаев требует для реализации материальных затрат.

Участие в официальных мероприятиях

Участие в официальных мероприятиях предполагает посещение учащимся выставок, конференций и т.п. Суть заключается в оценке мероприятия и составлении краткого отчёта с последующим представлением его педагогу. Подразумевается также предварительная подготовка и исследование тематических вопросов и проблем, касающихся темы мероприятия.

Положительные стороны метода - это мобилизация учащегося к поиску соответствующей тематике мероприятия информации, развитие навыков деловой коммуникации, совершенствование аналитических способностей.

К недостаткам можно отнести то, что эмоции и впечатления, полученные после посещения мероприятия, могут исказить реальную объективную оценку.

Использование информационно-компьютерных технологий

Суть представленного метода ясна из названия - в педагогическом процессе применяются современные высокотехнологичные средства передачи информации, такие как компьютеры, ноутбуки, цифровые проекторы и т.п. Осваиваемая учащимися информация представляется в сочетании с визуально-образными данными (видеоматериалами, графиками и т.п.), а сам изучаемый объект, явление или процесс может быть показан в динамике.

Преимуществом метода является то, что демонстрация учебного материала может быть динамичной, отдельные элементы материала или весь он могут быть повторены в любое время, педагог может предоставить учащимся копии материалов, а значит, для последующего изучения нет необходимости в особых условиях, например, в аудитории или классе.

Недостатки же состоят в том, что в большинстве случаев отсутствует интерактивная связь, в процессе использования метода не ведётся учёт индивидуальных особенностей учащихся, а педагог не имеет возможности оказывать стимулирующего воздействия на своих учеников.

И в отдельности, как о самостоятельно методе, следует сказать о специальных образовательных тренажёрах.

Образовательные тренажёры

В процессе создания тренажёров моделируются определённые педагогические задачи или относящиеся к изучаемой дисциплине ситуации. Осуществляется это посредством особого оборудования, которое находится в предназначенных для этого помещениях.

Учащиеся овладевают сложными навыками, алгоритмами решения задач, психомоторными действиями и мыслительными операциями по принятию решений, касающихся наиболее серьёзных ситуаций и вопросов в рамках какой-либо дисциплины.

Есть и ряд требований к эффективным тренажёрам:

  • Тренажёры должны разрабатываться с учётом психологических особенностей конкретной дисциплины, т.к. учебные задачи должны соответствовать задачам, которые будут встречаться в реальной жизни, по своему функциональному и предметному содержанию
  • Учебные задания, выполняющиеся на тренажёре, должны быть направлены на обеспечение учащихся оперативной обратной связью, на основе которой можно будет судить о качестве выполняемых учащимися действий
  • Тренажёр должен быть предназначен для многократного повторения заданий учащимися, т.к. необходимо достичь автоматизма правильности действий. О правильности действий, в свою очередь, могут говорить комментарии педагогов, а также ощущения учащихся, получаемые ими посредством органов чувств и переживаний.
  • Учебные задачи, которые выполняются при помощи тренажёра, необходимо подбирать так, чтобы сложность выполнения возрастала. Это позволяет учащемуся не только надлежащим образом освоить практику, но и не потерять

Любой метод обучения, который планируется применять в педагогическом процессе, может дать максимальный результат, если будет установлено, что он действительно пригоден к использованию. Установить же это можно только при помощи анализа особенностей и учащихся и той области, в которой они получают знания, навыки и умения.

Произвести оценку эффективности того или иного метода обучения можно также при помощи анализа содержательной части учебных задач и методов, которые предлагаются учащимся, опирающегося на то, соответствуют ли они актуальным проблемам и ситуациям.

Продуктивность педагогического процесса во время освоения учащимися новых знаний и приобретения новых навыков требует от педагогов разработки системы ориентировки в каждой изучаемой дисциплине. Создание оптимального содержания образовательных программ позволяет сформировать у учащихся системное мышление, которое будет гарантом их успешного обучения, и развития, наличия познавательного интереса, мотивации к последующему обучению и освоению каких бы то ни было знаний, навыков, предметов и дисциплин.

Но в педагогической деятельности нет и, пожалуй, не может быть какого-либо универсального метода или системы методов. Важно уметь применять комплексный подход, а это значит, что отдавать предпочтение в своей работе педагоги должны не только современным или традиционным методам обучения, а применять каждый из них и по отдельности и вместе, ставя перед собой задачу: выработать наиболее оптимальную и эффективную образовательную программу.

В этом уроке мы поговорили о современных методах обучения и указали их основные преимущества и недостатки. Конечно же, абсолютно все их особенности мы не раскрыли (такой цели мы, собственно и не ставили перед собой), однако уже имеющейся информации должно быть достаточно, чтобы помочь вам определиться с тем, какой метод импонирует вам в большей степени, в чём вы хотели бы разобраться более предметно и что применить впоследствии в своей педагогической деятельности.

Что же касается следующего урока, то в нём мы затронем не менее серьёзную тему, касающуюся непосредственного взаимодействия педагога и учащихся - мы расскажем о методах педагогического воздействия на личность учеников.

Проверьте свои знания

Если вы хотите проверить свои знания по теме данного урока, можете пройти небольшой тест, состоящий из нескольких вопросов. В каждом вопросе правильным может быть только 1 вариант. После выбора вами одного из вариантов, система автоматически переходит к следующему вопросу. На получаемые вами баллы влияет правильность ваших ответов и затраченное на прохождение время. Обратите внимание, что вопросы каждый раз разные, а варианты перемешиваются.

Министерство образования и науки Челябинской области

Пластовский технологический филиал

ГБПОУ «Копейский политехнический колледж им. С.В. Хохрякова»

МЕТОДИЧЕСКАЯ РАЗРАБОТКА

учебного кейса

для проведения занятия

по теме «КРУЧЕНИЕ»

по дисциплине

«Техническая механика»

Разработчик: Ю.В. Тимофеева, преподаватель Пластовского технологического филиала ГБПОУ «КПК»

Учебный кейс предназначен для организации самостоятельной аудиторной работы обучающихся по заявленному профилю. Содержит как теоретические сведения, так и практический материал для формирования общих и профессиональных компетенций.

Пояснительная записка

Практические занятия дисциплины «Техническая механика» направлены на формирование общих и профессиональных компетенций обучающихся.

При проведении практических занятий используются современные образовательные технологии, а именно технология кейс-метода. Кейс-метод позволяет заинтересовать обучающихся в изучении предмета, способствует формирования общих и профессиональных компетенций, сбора, обработки и анализа информации, характеризующей различные ситуации. Технология работы с кейсом в учебном процессе включает в себя индивидуальную самостоятельную работу обучающихся с материалами кейса, работу в малых группах по согласованию видения ключевой проблемы и ее решений, а также презентацию и экспертизу результатов малых групп на общей дискуссии в рамках учебной группы.

Практические занятия с использованием кейс-метода развивают такие профессионально значимые качества, как самостоятельность, ответственность, точность, творческую инициативу, исследовательские умения (наблюдать, сравнивать, анализировать, устанавливать зависимость, делать выводы и обобщения).

Необходимыми структурными элементами практических занятий, помимо самостоятельной деятельности обучающихся, является инструктаж, проводимый преподавателем, а также организация обсуждения итогов выполнения заданий. Выполнению практических занятий предшествует проверка знаний обучающихся – их теоретической готовности к выполнению заданий.

К каждому практическому занятию разработана подробная инструкция для обучающихся, в которой указан порядок необходимых действий, а также тестовые контрольные вопросы.

Основная позиция обучаемого в учебном процессе – активно – деятельностная, субъектная – включает в себя самостоятельный поиск, принятие решений, оценочную деятельность.

Основная позиция преподавателя – руководитель и партнер по выполнению практических заданий.

Отчеты практических занятиях обучающиеся оформляют в специальных папках для практических работ.

Анализ конкретных учебных ситуаций (case study) - метод обучения, предназначенный для совершенствования навыков и получения опыта в следующих областях: выявление, отбор и решение проблем; работа с информацией - осмысление значения деталей, описанных в ситуации; анализ и синтез информации и аргументов; работа с предположениями и заключениями; оценка альтернатив; принятие решений; слушание и понимание других людей - навыки групповой работы.

Долгоруков А. Метод case-study как современная технология профессионально-ориентированного обучения

Метод case-study или метод конкретных ситуаций (от английского case – случай, ситуация) – метод активного проблемно-ситуационного анализа, основанный на обучении путем решения конкретных задач – ситуаций (решение кейсов).

Метод конкретных ситуаций (метод case-study) относится к неигровым имитационным активным методам обучения.

Непосредственная цель метода case-study – совместными усилиями группы студентов проанализировать ситуацию – case, возникающую при конкретном положении дел, и выработать практическое решение; окончание процесса – оценка предложенных алгоритмов и выбор лучшего в контексте поставленной проблемы.

Общие и профессиональные компетенции, формируемые в учебном кейсе:

ОК 1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.

    ОК 2. Организовывать собственную деятельность, выбирая типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.

    ОК 3. Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность.

    ОК 4. Осуществлять поиск и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития.

    ОК 5. Использовать информационно – коммуникационные технологии в профессиональной деятельности.

    ОК 6. Работать в коллективе и в команде, эффективно общаться с коллегами, руководством, потребителями.

    ОК 7. Брать на себя ответственность за работу членов команды (подчиненных), за результат выполнения задания.

    ОК 8. Самостоятельно определять задачи профессионального и личностного развития, заниматься самообразованием, осознанно планировать повышение квалификации.

    ОК 9. Ориентироваться в условиях частой смены технологии в профессиональной деятельности.

    ПК1.2 Контролировать работу основных машин, механизмов и оборудования в соответствии с паспортными характеристиками и заданным технологическим режимом

    ПК 1.3 Обеспечивать работу транспортного оборудования

    ПК 1.4 Обеспечивать контроль ведения процессов производственного обслуживания

    ПК 1.5 Вести техническую и технологическую документацию

    ПК 1.6 Контролировать и анализировать качество исходного сырья и продуктов обогащения.

    ПК 2.1 Контролировать выполнение требований отраслевых норм, инструкций и правил безопасности при ведении технологического процесса

    ПК 2.4 Организовывать и осуществлять производственный контроль соблюдения требований промышленной безопасности и охраны труда на участке.

Тема : «»

Тип урока : комбинированный.

Вид урока : практическое занятие.

Обучающийся должен знать : что такое «кручение», «эпюра», правила знаков, взаимосвязь условия рационального расположения шкивов на валу и степени нагруженности вала.

Обучающийся должен уметь : используя метод сечений, производить расчет вала на прочность и жесткость при кручении, строить эпюры крутящих и уравновешивающих моментов при кручении вала и рационально располагать шкивы на валу.

Цели урока :

- образовательная цель : организовать деятельность обучающихся по закрепление знаний, умений и навыков в построении эпюр крутящих и уравновешивающих моментов при кручении вала и рационально располагать шкивы на валу;

- воспитательная цель : создать условия, обеспечивающие воспитание интереса к будущей специальности;

- развивающая цель : способствовать развитию умений обучающихся проводить анализ, сравнения, делать необходимые выводы.

Оснащение :

  1. компьютер;

    проектор;

    учебный кейс;

    презентация;

    методическая разработка практического занятия.

Макроструктура урока :

    Организационный этап (приветствие, перекличка)

    Мотивация. Чтобы выполнить расчет на прочность и жесткость при кручении вала, следует уметь: производить расчет вала на прочность и жесткость, строить эпюры. Это позволяет выявлять рациональное расположение шкивов на валу. Практическое занятие предполагает возможность закрепления знаний и умений в вопросе построения эпюр крутящих и уравновешивающих моментов.

    Актуализация опорных знаний и умений . В теоретическом обосновании практического занятия обучающимся предлагается при работе с учебным кейсом составить опорный конспект, ответить на вопросы теста. Далее следует тренировка в построении эпюр в группах. Затем обучающиеся получают индивидуальное задание.

    Закрепление и применение знаний . Выполнение индивидуальных заданий.

    Контроль и коррекция. Проверка построенных на данный момент занятия эпюр под руководством преподавателя. Тем, кто желает, предлагается поменяться тетрадями. С учетом найденных ошибок, следует коррекция эпюр.

    Анализ. Построение эпюр завершается выявлением рационального расположения шкивов на валу.

    Информация о домашнем задании (обучающимся предлагается закончить практическую работу).

Теория

Кручение. Внутренние силовые факторы при кручении. Построение эпюр крутящих моментов

Иметь представление о деформациях при кручении, о внутрен­них силовых факторах при кручении.

Уметь строить эпюры крутящих моментов.

Деформации при кручении

Кручение круглого бруса происходит при нагружении его па­рами сил с моментами в плоскостях, перпендикулярных продольной оси. При этом образующие бруса искривляются и разворачиваются на угол γ, называемый углом сдвига (угол поворота образующей). Поперечные сечения разворачиваются на угол φ, называемый углом закручивания (угол поворота сечения, рис. 1).

Длина бруса и размеры поперечного сечения прикручении не изменяются.

Связь между угловыми деформациями определяется соотношением

l - длина бруса; R - радиус сечения.

Длина бруса значительно больше радиуса сечения, следователь­но, φ ≥ γ

Угловые деформации при кручении рассчитываются в радиа­нах.

Гипотезы при кручении

    Выполняется гипотеза плоских сечений: поперечное сечение бруса, плоское и перпендикулярное продольной оси, после деформа­ции остается плоским и перпендикулярным продольной оси.

    Радиус, проведенный из центра поперечного сечения бруса, после деформации остается прямой линией (не искривляется).

    Расстояние между поперечными сечениями после деформации не меняется. Ось бруса не искривляется, диаметры поперечных се­чений не меняются.

Внутренние силовые факторы при кручении

Кручением - называется нагружение, при котором в поперечном сечении бруса возникает только один внутренний силовой фактор - крутящий момент.

Внешними нагрузками также являются две противоположно на­правленные пары сил.

Рассмотрим внутренние силовые факторы при кручении круг­лого бруса (рис. 1).

Для этого рассечем брус плоскостью I и рассмотрим равновесие отсеченной части (рис. 1а). Сечение рассматриваем со стороны отброшенной части.

Внешний момент пары сил разворачивает участок бруса про­тив часовой стрелки, внутренние силы упругости сопротивляются повороту. В каждой точке сечения возникает поперечная сила dQ (рис. 1б). Каждая точка сечения имеет симметричную, где возни­кает поперечная сила, направленная в обратную сторону. Эти силы образуют пару с моментом d т = pdQ; р - расстояние от точки до центра сечения. Сумма поперечных сил в сечении равна нулю:ΣdQ = 0

С помощью интегрирования получим суммарный момент сил упругости, называемый крутящим моментом:

Практически крутящий момент определяется из условия равно­весия отсеченной части бруса.

Крутящий момент в сечении равен сумме моментов внешних сил, действующих на отсеченную часть (рис. 1в):

Σ т г = 0, т. е. -т + М г = 0; М г = т = М к.

Эпюры крутящих моментов

Крутящие моменты могут меняться вдоль оси бруса. После определения величин моментов по сечениям строим график-эпюру крутящих моментов вдоль оси бруса.

Крутящий момент считаем положительным, если моменты внешних пар сил направлены по часовой стрелке, в этом случае мо­мент внутренних сил упругости направлен против часовой стрелки (рис. 2).


Порядок построения эпюры моментов аналоги­чен построению эпюр про­дольных сил. Ось эпюры параллельна оси бруса, значения моментов откла­дывают от оси вверх или вниз, масштаб построе­ния выдерживать обяза­тельно.

Кручение. Напряжения и деформации при кручении

Иметь представление о напряжении и деформациях при круче­нии, о моменте сопротивления при кручении.

Знать формулы для расчета напряжений в точке поперечного сечения, закон Гука при кручении.

Уметь выполнять проектировочные и проверочные расчеты круглого бруса.


Напряжения при кручении

Проводим на поверхности бру­са сетку из продольных и попе­речных линий и рассмотрим рису­нок, образовавшийся на поверхно­сти после деформации (рис. 1а). Поперечные окружности, оставаясь плоскими, поворачиваются на угол φ, продольные линии искривляют­ся, прямоугольники превращают­ся в параллелограммы. Рассмотрим элемент бруса 1234 после деформа­ции.


При выводе формул используем закон Гука при сдвиге и гипотезу плоских сечений и неискривления радиусов поперечных сечений.

При кручении возникает напряженное состояние, называемое «чистый сдвиг» (рис. 1б).

При сдвиге на боковой поверхности элемента 1234 возникают касательные напряжения, равные по величине (рис. 1в), элемент деформируется (рис. 1г).

Материал подчиняется закону Гука. Касательное напряжение пропорционально углу сдвига.

Закон Гука при сдвиге г = Gγ, G - модуль упругости при сдвиге, Н/мм 2 ; γ - угол сдвига, рад.


Напряжение в любой точке поперечного сечения

Рассмотрим поперечное сечение круглого бруса. Под действием внешнего момента в ка­ждой точке поперечного сечения возникают силы упругости dQ (рис. 2).

где г - касательное напряжение; dА - элемен­тарная площадка.

В силу симметрии сечения силы dQ образуют пары.

Элементарный момент силы dQ относительно центра круга

где р - расстояние от точки до центра круга.

Суммарный момент сил упругости получаем сложением (инте­грированием) элементарных моментов:

После преобразования получим формулу для определения напря­жений в точке поперечного сечения:

При р = 0 r к = 0; касательное напряжение при кручении про­порционально расстоянию от точки до центра сечения. Полученный интеграл J р называется полярным моментом инерции сечения. J р является геометрической характеристикой сечения при кручении. Она характеризует сопротивление сечения скручиванию.

Анализ полученной формулы для J р показывает, что слои, рас­положенные дальше от центра, испытывают большие напряжения.

Эпюра распределения касательных напряжений при кручении (рис. 3)

Рис. 7

Максимальные напряжения при кручении

Из формулы для определения напряжений и эпюры распределе­ния касательных напряжений при кручении видно, что максималь­ные напряжения возникают на поверхности.

Определим максимальное напряжение, учитывая, что p max = = d /2, где d - диаметр бруса круглого сечения.

Для круглого сечения полярный момент инерции рассчитыва­ется по формуле.

Максимальное напряжение возникает на поверхности, поэтому

Обычно J р /р тах обозначают W р и называют моментом сопро­тивления при кручении, или полярным моментом сопротивления сечения

Таким образом, для расчета максимального напряжения на по­верхности круглого бруса получаем формулу



Для круглого сечения


Для кольцевого сечения


Условие прочности при кручении Разрушение бруса при кручении происходит с поверхности, при расчете на прочность используют условие прочности

где допускаемое напряжение кручения.

Виды расчетов на прочность

Существует три вида расчетов на прочность:

1. Проектировочный расчет - определяется диаметр бруса (вала) в опасном сечении:


2. Проверочный расчет - проверяется выполнение условия

прочности

3. Определение нагрузочной способности (максимального

крутящего момента)

Расчет на жесткость

При расчете на жесткость определяется деформация и сравни­вается с допускаемой. Рассмотрим деформацию круглого бруса над действием внешней пары сил с моментом т (рис. 4).


При кручении деформация оце­нивается углом закручивания:

Здесь φ - угол закручивания; γ - угол сдвига; l - длина бруса; R - радиус; R = d /2. Откуда

Закон Гука имеет вид r к = Gγ.Подставим выражение для γ, получим



используем

Произведение GJ р называют жесткостью сечения.

Модуль упругости можно определить как G = 0,4E. Для стали G = 0,8 10 5 МПа.

Обычно рассчитывается угол закручивания, приходящийся на один метр длины бруса (вала) φо.

Условие жесткости при кручении можно записать в виде

где φ 0 - относительный угол закручивания, φ 0 = φ/ l ,

[ φ 0 ]= 1град/м = 0,02рад/м - допускаемый относительный угол закручивания.

Ответьте на вопросы тестового задания.

Тест Кручение

1. Какими буквами принято обозначать деформацию при кручении?

2. Выбрать пропущенную величину в за­коне Гука при сдвиге

3. Как распределяется напряжение в попе­речном сечении бруса при кручении?

4. Как изменится максимальное напряжение в сечении при кручении, если диаметр бруса уменьшится в 3 раза?

Уменьшится в 3 раза

Уменьшится в 9 раз

Увеличится в 9 раз

Увеличится в 27 раз

5. Образец диаметром 40 мм разрушился при крутящем моменте 230 Н-м. Определить разрушающее напряжение.

Пример решения

Расчет вала на прочность и жесткость при кручении .

Для стального вала круглого поперечного сечения постоянного по длине, показанного на рисунке 6, требуется:

1) определить значения моментов М 2 , М 3 , соответствующие передаваемым мощностям Р 2 , Р 3 , а также уравновешивающий момент М 1 ;

2) построить эпюру крутящих моментов и определить рациональность расположения шкивов на валу;

3) определить требуемый диаметр вала из расчетов на прочность и

жесткость, если: = 30 МПа; [φ 0 ] = 0,02 рад/м; w = 20 с -1 ; Р 2 =52 кВт; Р 3 =50 кВт; G = 8 × 10 4 МПа.

1. Определяем величины скручивающих моментов М 2 и М 3

;

.

2. Определяем уравновешивающий момент М 1

SМ z = 0; - М 1 + М 2 + М 3 =0;

М 1 = М 2 + М 3 ; М 1 = 2600 + 2500 = 5100 Н м;

3. Строим эпюру М z в соответствии с рисунком 6, определить рациональность расположения шкивов на валу.

Рисунок 10

4 . Определяем диаметр вала для опасного участка, из условий прочности и жесткости (М z ma х = 5100 Н м).

Из условия прочности

.

Из условия жесткости

= 75,5 мм

Требуемый диаметр вала получился больше из расчета на прочность, поэтому его принимаем как окончательный: d = 96 мм.

Задание для групп

Для стального вала постоянного поперечного сечения требуется определить значения моментов М 1 , М 2 и М 3 , а также уравновешивающий момент М 0 ; построить эпюры крутящих моментов и рациональность расположения шкивов на валу; определить требуемый диаметр вала из расчетов на прочность и жесткость, если = 20 МПа;

[φ 0 ]= 0,02 рад / м; w = 30 с -1 ; G = 8 × 10 4 МПа.

Данные взять из таблицы 1 и в соответствии с рисунком 11.

Окончательное значение диаметра округлить до ближайшего четного (или оканчивающего на пять) числа.

Таблица 1 - Исходные данные

Мощность, кВт

Задание для самостоятельного практического занятия №8

Для стального вала постоянного поперечного сечения в соответствии с рисунком 12:

Определить значения моментов М 1 , М 2 , М 3 , М 4 ;

Определить диаметр вала из расчетов на прочность и жесткость.

Принять [τ k ] = 30 МПа, [φ 0 ] = 0,02 рад / м.

Данные своего варианта взять из таблицы 2.

Окончательно принимаемое значение диаметра вала должно быть округлено до ближайшего большего четного или оканчивающегося на пять числа.

Рисунок 12 Схемы для выполнения практического занятия №8

Таблица 2 – Данные для выполнения самостоятельного практического занятия №8

в оответствии с рисунком 8

Мощность, кВт

Угловая скорость, с -1

Литература:

    Эрдеди А. А., Эрдеди Н. А. Теоретическая механика. Сопротивление материалов. – М.: Высшая школа, Академия, 2001. – 318с.

    Олофинская В. П. Техническая механика. – М.: Форум, 2011. – 349с

    Аркуша А. И.Техническая механика. – М.: Высшая школа, 1998. - 351с.

    Вереина Л. И., Краснов М. М. Основы технической механики. – М.: «Академия», 2007. – 79с.

Как форма практических занятий в преподавании общепрофессиональных дисциплин (на примере технической механики) Щепинова Людмила Сергеевна преподаватель специальных дисциплин ГБОУ СПО ПТ 2 Москва, г * Ролевые игры


Понятие ролевой игры Ролевые игры занимают важное место среди современных психолого- педагогических технологий обучения. Как метод они получили распространение в 70-е годы 20 века. Для повышения эффективности обучающей игры ее технология должна отвечать определенным требованиям: · Игра должна соответствовать целям обучения; · Необходима определенная психологическая подготовка участников игры, которая бы соответствовала содержанию игры; · Возможность использования творческих элементов в игре; · Преподаватель должен выступать не только в роли руководителя, но и как корректор и консультант в процессе игры.


Понятие ролевой игры Любая обучающая игра состоит из нескольких этапов: 1. Создание игровой атмосферы. На данном этапе определяется содержание и основная задача игры, осуществляется психологическая подготовка ее участников; 2. Организация игрового процесса, включающая инструктаж – разъяснение правил и условий игры участникам - и распределение ролей среди них; 3. Проведение игры, в результате которой должна быть решена поставленная задача; 4. Подведение итогов. Анализ хода и результатов игры как самими участниками, так и экспертами (психологом, педагогом).


Ролевая игра «Собеседование при приеме на работу на должность автомеханика в фирму BMW» на должность автомеханика в фирму BMW» Игра имитирует собеседование, проводимое крупной автомобильной фирмой при поиске претендентов на вакансии техников-автомехаников. В подобной ситуации реально оказался один из студентов нашего техникума, после его рассказа и возникла идея провести аналогичную ролевую игру. При таком собеседовании выявляются базовые теоретические знания претендентов по основам теоретической механики (сопротивления материалов, деталям машин и т.д.) и практические навыки решения несложных задач.


Порядок проведения ролевой игры Перед проведением занятия студентам дается задание: повторить следующие разделы теоретической механики: основные понятия и аксиомы статики, плоская система сходящихся сил, пара сил и момент силы относительно точки. В начале занятия преподаватель объясняет цели и задачи занятия, формат проведения занятия. Затем студенты получают две карточки с заданиями и лист собеседования. Преподаватель отмечает на каждом листе номер варианта. Возможная схема расположения вариантов представлена на слайде. В течении минут все решают задачи на оборотной стороне листа собеседования. Затем преподаватель приглашает четверых наиболее подготовленных студентов, которым поручается роль экспертов- экзаменаторов как представителей компании. Перед каждым из них лежит лист с теоретическими вопросами (слайд 9).


Лист собеседования Количество экземпляров - по числу участников Формат - Лист собеседования (Ф, И, О) Код вопроса (номер варианта) Количество баллов Итого баллов Подпись экзаменатора


Карточка с задачей экз. Заданы три сходящиеся силы F 1, F 2 и F 3. Найти их равнодействующую R. Номер варианта F1F1 F2F2 F3F


Карточка с задачей экз. Показать на схеме все силы, действующие на деталь АВ


Ряд2 ряд3 ряд Возможная схема распределения вариантов


Теоретические вопросы к собеседованию Тема вопрос 1.Какая система сил называется уравновешенной? 2. Какая сила называется равнодействующей данной системы сил? Тема вопроса 3. Первая аксиома статики. Может ли тело находиться в равновесии под действием одной силы? 4. Вторая аксиома статики. Следствие из первой и второй аксиом; 5. Третья аксиома статики; Четвертая аксиома статики; Тема вопроса 6. Что такое связь? Как всегда направлена сила реакции связи? Виды связей. 7. Как направлена сила реакции связи гладкой поверхности (опоры)? Шарового шарнира? 8. Как направлена сила реакции связи нити? Стержня? Цилиндрического шарнира? Тема вопроса 9. Определение сходящихся сил. Имеет ли такая система равнодействующую? 10. Условие равновесия плоской системы сходящихся сил (геометрическое и аналитическое); 11. Что такое проекция силы на ось? Какой знак может иметь проекция? 12. Сложение сходящихся сил (геометрическое и аналитическое); Тема вопроса 13. Момент силы относительно точки, его свойства. 14. Пара сил, момент пары. Эквивалентные пары. 15. Сложение пар, лежащих в одной плоскости. 16. Условие равновесия системы пар, лежащих в одной плоскости. Всего 10 вопросов. Каждый вопрос оценивается по системе баллов: 0; 1 или 2


Порядок проведения ролевой игры (продолжение) Всего нужно задать 10 вопросов. Каждый ответ оценивается по трехбалльной шкале: «0», «1», «2». Так же оцениваются и задачи. Далее, суммируются все полученные баллы, и результаты заносятся в итоговую ведомость (слайд 12). Затем оглашаются результаты: Набравшие балла приглашаются на работу с ближайшего понедельника со стартовой зарплатой 1000 $ Набравшие балла приглашаются на работу с ближайшего понедельника со стартовой зарплатой 800 $ Набравшие баллов находятся в резерве с возможностью приглашения с дополнительным собеседованием. Набравшие менее 13 баллов приходите через год!


Итоговая ведомость Фамилия И. О.Число баллов 1.Абдрахманов Р.Р. 2.Алтунин Д.С. 3.Бебих Г.К. 4.Гаджиев А.М. 5.Галкин Д.А. 6.Гусенко П.С. 7.Дуненков П. А. 8.Зиновьев Б.А. 9.Зорькин И. Р. 10.Иванов Д.А. 11.Кацапов С.В. 12.Коваленко И.М. 13.Кондратенко Н.В. 14.Косоруков М.Р. 15.Кудинов М.М. 16.Мавлонов Н. К. 17.Мелиев З М. 18.Новоселов М. И. 19.Пешалов А. Б. 20.Писарев В. И. 21.Спасский Д.А. 22.Сухоруков И. С. 23.Ходяков Д. С. 24.Хомяков А. М. 25.Щеколдин Н. И,


Что необходимо для проведения игры: лист с теоретическими вопросами - 4 экземпляра; карточка с графической задачей - 15 экземпляров; карточка с аналитической задачей - 15 экземпляров; лист собеседования - по числу участников; итоговая ведомость - 1 экземпляр. Использованные интернет-источники: Shools-geograf.at.>…kachestvo_obrazovanija…vidy …kachestvo_obrazovanija…vidy">


Итоги ролевой игры При проведении ролевой игры собеседование прошли 18 соискателей- студентов. Один из них набрал максимально возможное число баллов - 24 балла. Этот студент исполнял и роль специалиста-эксперта. Анализ хода игры показал, что для группы порядка 20 человек ролевую игру сложно провести за один урок в 45 минут: обработка результатов и их объявление заняло еще около 20 минут. Возникли и некоторые психологические сложности: один из предполагаемых экспертов, весьма неплохо подготовленный, в последний момент отказался играть свою роль. В целом, по итогам проведения игры можно сделать следующие выводы: - ролевая игра значительно повысила интерес обучающихся к дисциплине; - практически все обучающиеся с интересом включились в игровой процесс, ждали этого урока, готовились к нему; - подготовка к уроку–ролевой игре должна проводиться преподавателем весьма интенсивно и включать в себя психологический аспект; - имитирует реальную ситуацию, формирует навыки поведения при трудоустройстве.