III. Примеры задач с решениями

Пусть имеется простой двухчлен вида ax + b = 0. Решить его не представляет никакого труда. Нужно просто неизвестное перенести в одну сторону, а коэффициенты в другую. В итоге x = - b/a. Рассматриваемое уравнение можно усложнить, добавив квадрат ax2 + bx + c = 0. Решается оно с помощью нахождения дискриминанта. Если он больше нуля, то решения будет два, при его равенстве нулю - корень только один, а когда он меньше, то решений и вовсе нет.

Следующий тип уравнения пусть содержит третью степень ax3 + bx2 + c + d = 0. Это равенство у многих вызывает затруднения. Хотя и существуют различные способы, позволяющие решить такое уравнение, например, формула Кордана, но их уже нельзя применять для степеней пятого и высших порядков. Поэтому математики задумывались об универсальном способе, с помощью которого можно было бы вычислять уравнения любой сложности.

В школе обычно предлагают использовать метод группировки и анализа, при котором многочлен можно разложить на хотя бы два множителя. Для кубического уравнения можно записать: (x - x0) (ax2 + bx + c) = 0. Затем используют то, что произведение будет равно нулю лишь в том случае, если линейный двучлен или квадратное уравнение равняется ему. Затем выполняют стандартное решение. Проблема при вычислении такого типа приведённых равенств возникает во время поиска x0. Вот в этом случае и поможет схема Горнера.

Алгоритм, предложенный Горнером, на самом деле был открыт раньше итальянским математиком и доктором медицины Паоло Руффини. Он первый доказал невозможность нахождения радикала в выражениях пятой степени. Но его работа содержала много противоречий, которые не позволили её принять математическим миром учёных. Основываясь на его трудах, в 1819 году британец Уильям Джордж Горнер опубликовал способ приближённого нахождения корней многочлена. Эта работа была напечатана Королевским научным обществом и получила название метод Руффини-Горнера.

После шотландец Огастес де Морган расширил возможности использования метода. Способ нашёл применение в теоретико-множественных соотношениях и теории вероятности. По сути, схема является алгоритмом для вычисления частного и остатка отношения записи Р (х) на х-с.

Принцип метода

Впервые учащихся знакомят со способом нахождения корней с использованием схемы Горнера в высших классах средней школы на уроках алгебры. Объясняют её на примере решения уравнения третьей степени: x3 + 6x - x - 30 = 0. При этом в условии задачи дано, что корнем этого уравнения является цифра два. Задача заключается в том, чтобы определить другие корни.

Обычно это делается следующим образом. Если многочлен p (x) имеет корень x0, то p (x) можно представить как произведение разности икс минус икс нулевое на некий другой многочлен q (x), степень которого будет на единицу меньше. Выделяют нужный многочлен обычно способом деления. Для рассматриваемого примера уравнение будет иметь вид: (x3 + 6x - x - 30) / (x - x2). Деление лучше выполнять «уголком». В итоге получится выражение: x 2 + 8x + 15 .

Таким образом, искомое выражение можно переписать в виде (x - 2)* (x 2 + 8x + 15) = 0. Далее, для того чтобы найти решение, нужно выполнить следующее:

  • Найти корни в первом члене равенства, приравняв его к нулю: x - 2 = 0. Отсюда x = 2, что также следует из условия.
  • Решить квадратное уравнение, приравняв второй член многочлена к нулю: x 2 + 8x + 15 = 0. Найти корни можно через дискриминант или по формулам Виета. Так можно записать, что (x+3) * (x+5) = 0, то есть икс один равняется трём, а икс два - минус пяти.

Все три корня найдены. Но тут возникает резонный вопрос, где же используется в примере схема Горнера? Так вот, всё это громоздкое вычисление можно заменить на скоростной алгоритм решения. Состоит он из простых действий. Вначале нужно начертить таблицу, содержащую несколько столбцов и строчек. Начиная со второго столбца начальной строчки, записывают коэффициенты, стоящие в уравнении исходного многочлена. В первом столбике ставят то число, на которое будет выполняться деление, то есть потенциальные члены решения (х0).

После того как в таблицу записали выбранное х0, заполнение происходит по следующему принципу:

  • в первый столбец сносится просто то, что стоит в верхнем элементе второго столбика;
  • для нахождения следующего числа нужно снесённое число умножить на выбранное x0 и добавить стоящее число в заполняемом столбике сверху;
  • аналогичные операции проделывают до окончательного заполнения всех ячеек;
  • строки в последнем столбике равные нулю и будут искомым решением.

Для рассматриваемого примера при подстановке двойки строчка будет состоять из ряда: 2, 1, 8, 15, 0. Таким образом, находятся все члены. При этом схема работает для любого порядка степенного уравнения.

Пример использования

Для того чтобы понять, как пользоваться схемой Горнера, нужно подробно рассмотреть типовой пример . Пусть требуется определить кратность корня х0 многочлена p (x) = x 5 - 5x 4 + 7x 3 - 2x 2 + 4x - 8. Часто в задачах приходится подбирать корни методом перебора, но для того чтобы сэкономить время, будем считать, что они уже известны и их нужно просто проверить. Тут следует понимать, что применяя схему, расчёт всё равно будет быстрее, чем использование других теорем или метода понижения.

Согласно алгоритму решения, в первую очередь нужно начертить таблицу. В первой строчке указывают основные коэффициенты. Для уравнения необходимо будет начертить восемь столбцов. Затем узнать, сколько раз в исследуемом многочлене поместится х0 = 2. Во второй строчке второго столбца просто сносят коэффициент. Для рассматриваемого случая он будет равняться единице. В находящейся рядом ячейке значение вычисляют как 2 *1 -5 = -3. В следующей: 2 *(-3) + 7 = 1. Таким же образом заполняют оставшиеся ячейки.

Как видно, минимум один раз двойка помещается в многочлен. Теперь нужно проверить, является ли двойка корнем низшего полученного выражения. После выполнения аналогичных действий в таблице должен получиться следующий ряд: 1, -1, -1. -2, 0. Фактически это квадратное уравнение, которое также необходимо проверить. В результате вычисленный ряд будет состоять из 1, 1, 1, 0.

В последнем выражении двойка не может быть рациональным решением. То есть в исходном многочлене цифра два используется три раза, а значит можно записать: (x - 2) 3 * (x 2 + x + 1). То, что двойка не является корнем квадратного выражения, можно понять по следующим фактам:

  • свободный коэффициент не делится на два;
  • все три коэффициента положительны, значит, что график неравенства будет увеличиваться начиная с двух.

Таким образом, применение системы позволяет избавиться от использования сложных числителей и делителей. Все действия сводятся к простому перемножению целых чисел и выделения нулей.

Пояснение способа

Подтверждение справедливости существования схемы Горнера объясняется рядом факторов. Представим, что есть многочлен третьей степени: x3 + 5x – 3x + 8. Из этого выражения икс можно вынести за скобку: x * (x2 + 5x – 3) + 8. Из полученной формулы можно снова вынести икс: x * (x * (x + 5) – 3) + 8 = x * (x* ((x * 1) + 5) – 3) + 8.

По сути, чтобы посчитать полученное выражение, можно подставить предполагаемое значение икс в первую внутреннюю скобку и выполнить алгебраические операции, согласно старшинству. Фактически это все те действия, которые выполняются в методе Горнера. При этом числа 8, -3, 5, 1 - это коэффициенты исходного многочлена.

Пусть имеется многочлен P (x) = an * x n + an -1 * x n-1 + 1x1 + a0 = 0. Если у этого выражения есть некий корень x = x0, то это означает, что рассматриваемое выражение можно переписать в виде: P (x) = (x-x0) * Q(x). Это следствие из теоремы Безу. Здесь важно то, что степень многочлена Q(x) будет на единицу меньше, чем имеет P(x). Следовательно, его можно расписать в меньшем виде: P (x) = (x-x0) * (bn-1 * x n-1 + bn-2 * x n-2 + b0) = 0. Две конструкции тождественно равны между собой.

А это значит, что все коэффициенты рассматриваемых многочленов равны, в частности, (x0)b) = a0. Используя это, можно утверждать, что какими бы ни были числа a0 и b0, икс всегда является делителем, то есть a0 всегда можно разделить на корни многочлена. Иными словами, найти рациональные варианты решения.

Общий случай, объясняющий метод, будет выглядеть следующим образом: an * x n + an-1 * x n-1 + … + a1x + a0 = x * (an * x n-1 + an-1 * x n-2 + … + a1) + a0 = x * (x * (... (an * x + an -1)+ an-2...an-m)+ a0). То есть схема работает вне зависимости от степени многочлена. Она универсальная. При этом подходит как для неполных уравнений, так и полных. Это инструмент, позволяющий проверить х0 на корень. Если же он не является решением, то число, оставшееся в конце, будет остатком от деления рассматриваемого многочлена.

В математике правильной записью метода будет выражение: Pn(x) = ∑i = 0naixn−i = a0xn + a1xn − 1 + a2xn − 2 +…+ an − 1x + an. В нём значение i изменяется от нуля до эн, а сам многочлен делится на бином x – a. После выполнения этого действия получается выражение, степень которого на единицу меньше от исходного. Другими словами, определяется как n – 1.

Расчёт на онлайн-калькуляторе

Использовать ресурсы, предоставляющие доступ к вычислениям корней высших степеней многочленов, довольно удобно. Чтобы воспользоваться такими сайтами, особые знания в математике или программировании иметь не нужно. Всё, что необходимо пользователю - это доступ к интернету и браузер, поддерживающий работу Java скриптов.

Существует несколько десятков таких сайтов. При этом некоторые из них могут просить за предоставленное решение денежное вознаграждение. Хотя большинство ресурсов бесплатны и не только рассчитывают корни в степенных уравнениях, но и предоставляют подробное решение с комментариями. Кроме этого, на страницах расчётчиков любой желающий сможет ознакомиться с кратким теоретическим материалом и рассмотреть решение примеров различной сложности. Так что вопросов с понятием, откуда взялся ответ, возникнуть не должно.

Из всего множества считающих онлайн–калькуляторов по схеме Горнера можно выделить следующие три:

  • Kontrolnaya-rabota. Сервис ориентирован на старшеклассников, но по своим возможностям довольно функционален. С его помощью можно очень быстро проверить корни на соответствие.
  • Nauchniestati. Приложение позволяет определить корни методом Горнера буквально за две-три секунды. На сайте можно найти всю необходимую теорию. Для выполнения расчёта нужно ознакомиться с правилами ввода математической формулы, указанными тут же на сайте.
  • Сalc. Используя этот сайт, пользователь сможет получить подробное описание решения с изображением таблицы. Для этого в специальную форму необходимо ввести уравнение и нажать кнопку «решение».

Программы, используемые для расчётов, отличаются интуитивно понятным интерфейсом и не содержат рекламного и вредоносного кода. Выполнив несколько вычислений на этих ресурсах, пользователь вполне сможет самостоятельно научится определять корни, используя метод Горнера.

При этом онлайн-калькуляторы полезны не только учащимся, но и инженерам, проводящим сложные вычисления. Ведь самостоятельный расчёт требует внимания и сосредоточенности. Любая незначительная ошибка в итоге приведёт к неверному ответу. В то же время появление ошибки при вычислениях с помощью онлайн-расчётчиков невозможно.

Цели урока:

  • научить учащихся решать уравнения высших степеней используя схему Горнера;
  • воспитывать умение работать в парах;
  • создать в совокупности с основными разделами курса базу для развития способностей учащихся;
  • помочь ученику оценить свой потенциал, развивать интерес к математике, умение мыслить, высказываться по теме.

Оборудование: карточки для работы в группах, плакат со схемой Горнера.

Метод обучения: лекция, рассказ, объяснение, выполнение тренировочных упражнений.

Форма контроля: проверка задач самостоятельного решения, самостоятельная работа.

Ход урока

1. Организационный момент

2. Актуализация знаний учащихся

Какая теорема позволяет определить, является ли число корнем данного уравнения (сформулировать теорему)?

Теорема Безу. Остаток от деления многочлена Р(х) на двучлен х-с равен Р(с), число с называют корнем многочлена Р(х), если Р(с)=0. Теорема позволяет, не выполняя операцию деления, определить, является ли данное число корнем многочлена.

Какие утверждения облегчают поиск корней?

а) Если старший коэффициент многочлена равен единице, то корни многочлена следует искать среди делителей свободного члена.

б) Если сумма коэффициентов многочлена равна 0, то один из корней равен 1.

в)Если сумма коэффициентов стоящих на четных местах, равна сумме коэффициентов, стоящих на нечетных местах, то один из корней равен -1.

г) Если все коэффициенты положительны, то корнями многочлена являются отрицательные числа.

д) Многочлен нечетной степени имеет хотя бы один действительный корень.

3. Изучение нового материала

При решении целых алгебраических уравнений приходиться находить значения корней многочленов. Эту операцию можно существенно упростить, если проводить вычисления по специальному алгоритму, называемому схемой Горнера. Эта схема названа в честь английского ученого Уильяма Джорджа Горнера. Схема Горнера это алгоритм для вычисления частного и остатка от деления многочлена Р(х) на х-с. Кратко, как он устроен.

Пусть дан произвольный многочлен Р(х)=а 0 х n + а 1 х n-1 + …+ а n-1 х+ а n . Деление этого многочлена на х-с – это представление его в виде Р(х)=(х-с)g(х) + r(х). Частное g(х)=в 0 х n-1 + в n х n-2 +…+в n-2 х + в n-1 , где в 0 =а 0 , в n =св n-1 +а n , n=1,2,3,…n-1. Остаток r(х)= св n-1 +а n . Этот метод вычисления и называется схемой Горнера. Слово « схема» в названии алгоритма связана с тем, что обычно его выполнение оформляют следующим образом. Сначала рисуют таблицу 2(n+2). В левой нижней клетке записывают число с, а в верхней строке коэффициенты многочлена Р(х). При этом левую верхнюю клетку оставляют пустой.

в 0 =а 0

в 1 =св 1 +а 1

в 2 =св 1 + а 2

в n-1 =св n-2 +а n-1

r(х)=f(с)=св n-1 +а n

Число, которое после выполнения алгоритма оказывается записанным в правой нижней клетке, и есть остаток от деления многочлена Р(х) на х-с. Другие числа в 0 , в 1 , в 2 ,… нижней строки являются коэффициентами частного.

Например: Разделить многочлен Р(х)= х 3 -2х+3 на х-2.

Получаем, что х 3 -2х+3=(х-2) (х 2 +2х+2) + 7.

4. Закрепление изученного материала

Пример 1: Разложите на множители с целыми коэффициентами многочлен Р(х)=2х4-7х 3 -3х 2 +5х-1.

Ищем целые корни среди делителей свободного члена -1: 1; -1. Составим таблицу:

X = -1 – корень

Р(х)= (х+1) (2х 3 -9х 2 +6х -1)

Проверим 1/2.

Х=1/2 - корень

Следовательно, многочлен Р(х) можно представить в виде

Р(х)= (х+1) (х-1/2) (х 2 -8х +2) = (х+1) (2х -1) (х 2 - 4х +1)

Пример 2: Решить уравнение 2х 4 - 5х 3 + 5х 2 - 2 = 0

Так как сумма коэффициентов многочлена, записанного в левой части уравнения, равна нулю, то один из корней 1. Воспользуемся схемой Горнера:

Х=1 - корень

Получаем Р(х)=(х-1) (2х 3 -3х 2 =2х +2). Будем искать корни среди делителей свободного члена 2.

Выяснили, что целых корней больше нет. Проверим 1/2; -1/2.

Х= -1/2 - корень

Ответ: 1; -1/2.

Пример 3: Решить уравнение 5х 4 – 3х 3 – 4х 2 -3х+ 5 = 0.

Корни данного уравнения будем искать среди делителей свободного члена 5: 1;-1;5;-5. х=1 - корень уравнения, так как сумма коэффициентов равна нулю. Воспользуемся схемой Горнера:

уравнение представим в виде произведения трех множителей: (х-1) (х-1) (5х 2 -7х + 5)=0. Решая квадратное уравнение 5х 2 -7х+5=0, получили Д=49-100=-51, корней нет.

Карточка 1

  1. Разложите на множители многочлен: х 4 +3х 3 -5х 2 -6х-8
  2. Решите уравнение: 27х 3 -15х 2 +5х-1=0

Карточка 2

  1. Разложите на множители многочлен: х 4 -х 3 -7х 2 +13х-6
  2. Решите уравнение: х 4 +2х 3 -13х 2 -38х-24=0

Карточка 3

  1. Разложите на множители: 2х 3 -21х 2 +37х+24
  2. Решите уравнение: х 3 -2х 2 +4х-8=0

Карточка 4

  1. Разложите на множители: 5х 3 -46х 2 +79х-14
  2. Решите уравнение: х 4 +5х 3 +5х 2 -5х-6=0

5. Подведение итогов

Проверка знаний при решении в парах осуществляется на уроке путем узнавания способа действия и названия ответа.

Домашнее задание:

Решите уравнения:

а) х 4 -3х 3 +4х 2 -3х+1=0

б) 5х 4 -36х 3 +62х 2 -36х+5=0

в) х 4 +х 3 +х+1=4х 2

г) х 4 +2х 3 -х-2=0

Литература

  1. Н.Я. Виленкин и др., Алгебра и начала анализа 10 класс (углубленное изучение математики): Просвещение, 2005.
  2. У.И. Сахарчук, Л.С. Сагателова, Решение уравнений высших степеней: Волгоград, 2007.
  3. С.Б. Гашков, Системы счисления и их применение.

Цели урока:

  • научить учащихся решать уравнения высших степеней используя схему Горнера;
  • воспитывать умение работать в парах;
  • создать в совокупности с основными разделами курса базу для развития способностей учащихся;
  • помочь ученику оценить свой потенциал, развивать интерес к математике, умение мыслить, высказываться по теме.

Оборудование: карточки для работы в группах, плакат со схемой Горнера.

Метод обучения: лекция, рассказ, объяснение, выполнение тренировочных упражнений.

Форма контроля: проверка задач самостоятельного решения, самостоятельная работа.

Ход урока

1. Организационный момент

2. Актуализация знаний учащихся

Какая теорема позволяет определить, является ли число корнем данного уравнения (сформулировать теорему)?

Теорема Безу. Остаток от деления многочлена Р(х) на двучлен х-с равен Р(с), число с называют корнем многочлена Р(х), если Р(с)=0. Теорема позволяет, не выполняя операцию деления, определить, является ли данное число корнем многочлена.

Какие утверждения облегчают поиск корней?

а) Если старший коэффициент многочлена равен единице, то корни многочлена следует искать среди делителей свободного члена.

б) Если сумма коэффициентов многочлена равна 0, то один из корней равен 1.

в)Если сумма коэффициентов стоящих на четных местах, равна сумме коэффициентов, стоящих на нечетных местах, то один из корней равен -1.

г) Если все коэффициенты положительны, то корнями многочлена являются отрицательные числа.

д) Многочлен нечетной степени имеет хотя бы один действительный корень.

3. Изучение нового материала

При решении целых алгебраических уравнений приходиться находить значения корней многочленов. Эту операцию можно существенно упростить, если проводить вычисления по специальному алгоритму, называемому схемой Горнера. Эта схема названа в честь английского ученого Уильяма Джорджа Горнера. Схема Горнера это алгоритм для вычисления частного и остатка от деления многочлена Р(х) на х-с. Кратко, как он устроен.

Пусть дан произвольный многочлен Р(х)=а 0 х n + а 1 х n-1 + …+ а n-1 х+ а n . Деление этого многочлена на х-с – это представление его в виде Р(х)=(х-с)g(х) + r(х). Частное g(х)=в 0 х n-1 + в n х n-2 +…+в n-2 х + в n-1 , где в 0 =а 0 , в n =св n-1 +а n , n=1,2,3,…n-1. Остаток r(х)= св n-1 +а n . Этот метод вычисления и называется схемой Горнера. Слово « схема» в названии алгоритма связана с тем, что обычно его выполнение оформляют следующим образом. Сначала рисуют таблицу 2(n+2). В левой нижней клетке записывают число с, а в верхней строке коэффициенты многочлена Р(х). При этом левую верхнюю клетку оставляют пустой.

в 0 =а 0

в 1 =св 1 +а 1

в 2 =св 1 + а 2

в n-1 =св n-2 +а n-1

r(х)=f(с)=св n-1 +а n

Число, которое после выполнения алгоритма оказывается записанным в правой нижней клетке, и есть остаток от деления многочлена Р(х) на х-с. Другие числа в 0 , в 1 , в 2 ,… нижней строки являются коэффициентами частного.

Например: Разделить многочлен Р(х)= х 3 -2х+3 на х-2.

Получаем, что х 3 -2х+3=(х-2) (х 2 +2х+2) + 7.

4. Закрепление изученного материала

Пример 1: Разложите на множители с целыми коэффициентами многочлен Р(х)=2х4-7х 3 -3х 2 +5х-1.

Ищем целые корни среди делителей свободного члена -1: 1; -1. Составим таблицу:

X = -1 – корень

Р(х)= (х+1) (2х 3 -9х 2 +6х -1)

Проверим 1/2.

Х=1/2 - корень

Следовательно, многочлен Р(х) можно представить в виде

Р(х)= (х+1) (х-1/2) (х 2 -8х +2) = (х+1) (2х -1) (х 2 - 4х +1)

Пример 2: Решить уравнение 2х 4 - 5х 3 + 5х 2 - 2 = 0

Так как сумма коэффициентов многочлена, записанного в левой части уравнения, равна нулю, то один из корней 1. Воспользуемся схемой Горнера:

Х=1 - корень

Получаем Р(х)=(х-1) (2х 3 -3х 2 =2х +2). Будем искать корни среди делителей свободного члена 2.

Выяснили, что целых корней больше нет. Проверим 1/2; -1/2.

Х= -1/2 - корень

Ответ: 1; -1/2.

Пример 3: Решить уравнение 5х 4 – 3х 3 – 4х 2 -3х+ 5 = 0.

Корни данного уравнения будем искать среди делителей свободного члена 5: 1;-1;5;-5. х=1 - корень уравнения, так как сумма коэффициентов равна нулю. Воспользуемся схемой Горнера:

уравнение представим в виде произведения трех множителей: (х-1) (х-1) (5х 2 -7х + 5)=0. Решая квадратное уравнение 5х 2 -7х+5=0, получили Д=49-100=-51, корней нет.

Карточка 1

  1. Разложите на множители многочлен: х 4 +3х 3 -5х 2 -6х-8
  2. Решите уравнение: 27х 3 -15х 2 +5х-1=0

Карточка 2

  1. Разложите на множители многочлен: х 4 -х 3 -7х 2 +13х-6
  2. Решите уравнение: х 4 +2х 3 -13х 2 -38х-24=0

Карточка 3

  1. Разложите на множители: 2х 3 -21х 2 +37х+24
  2. Решите уравнение: х 3 -2х 2 +4х-8=0

Карточка 4

  1. Разложите на множители: 5х 3 -46х 2 +79х-14
  2. Решите уравнение: х 4 +5х 3 +5х 2 -5х-6=0

5. Подведение итогов

Проверка знаний при решении в парах осуществляется на уроке путем узнавания способа действия и названия ответа.

Домашнее задание:

Решите уравнения:

а) х 4 -3х 3 +4х 2 -3х+1=0

б) 5х 4 -36х 3 +62х 2 -36х+5=0

в) х 4 +х 3 +х+1=4х 2

г) х 4 +2х 3 -х-2=0

Литература

  1. Н.Я. Виленкин и др., Алгебра и начала анализа 10 класс (углубленное изучение математики): Просвещение, 2005.
  2. У.И. Сахарчук, Л.С. Сагателова, Решение уравнений высших степеней: Волгоград, 2007.
  3. С.Б. Гашков, Системы счисления и их применение.

Слайд 3

Горнер Вильямc Джордж (1786-22.9.1837)-английский математик. Родился в Бристоле. Учился и работал там же, затем в школах Бата. Основные труды по алгебре. В 1819г. опубликовал способ приближенного вычисления вещественных корней многочлена, который называется теперь способом Руффини-Горнера (этот способ был известен китайцам еще в XIII в.) Именем Горнера названа схема деления многочлена на двучлен х-а.

Слайд 4

СХЕМА ГОРНЕРА

Способ деления многочлена n-й степени на линейный двучленх - а, основанный на том, что коэффициенты неполного частного и остатокr связаны с коэффициентами делимого многочлена и с а формулами:

Слайд 5

Вычисления по схеме Горнера располагают в таблицу:

Пример 1. Разделить Неполное частное равно х3-х2+3х - 13 и остаток равен 42=f(-3).

Слайд 6

Основным преимуществом этого метода является компактность записи и возможность быстрого деления многочлена на двучлен. По сути, схема Горнера является другой формой записи метода группировки, хотя, в отличие от последнего, является совершенно ненаглядной. Ответ (разложение на множители) тут получается сам собой, и мы не видим самого процесса его получения. Мы не будем заниматься строгим обоснованием схемы Горнера, а лишь покажем, как она работает.

Слайд 7

Пример2.

Докажем, что многочлен Р(х)=х4-6х3+7х-392 делится на х-7,и найдем частное от деления. Решение. Используя схему Горнера, найдем Р(7): Отсюда получаем Р(7)=0, т.е. остаток при делении многочлена на х-7 равен нулю и, значит, многочлен Р(х) кратен (х-7).При этом числа во второй строке таблицы являются коэффициентами частного от деления Р(х) на (х-7), поэтому Р(х)=(х-7)(х3+х2+7х+56).

Слайд 8

Разложить на множители многочлен x3 – 5x2 – 2x + 16.

Данный многочлен имеет целые коэффициенты. Если целое число является корнем этого многочлена, то оно является делителем числа 16. Таким образом, если у данного многочлена есть целые корни, то это могут быть только числа ±1; ±2; ±4; ±8; ±16. Непосредственной проверкой убеждаемся, что число 2 является корнем этого многочлена, то есть x3 – 5x2 – 2x + 16 = (x – 2)Q(x), где Q(x) − многочлен второй степени

Слайд 9

Полученные числа 1, −3, −8 являются коэффициентами многочлена, который получается при делении исходного многочлена на x – 2. Значит, результат деления: 1 · x2 + (–3)x + (–8) = x2 – 3x – 8. Степень многочлена, полученного в результате деления, всегда на 1 меньше, чем степень исходного. Итак: x3 – 5x2 – 2x + 16 = (x – 2)(x2 – 3x – 8).

Обычно многочлен представлен в виде:

$f(x)=\sum\limits_{k=0}^{n} a_k x^k$

f(x) = a 0 + a 1 x + a 2 x 2 + ... + a k x k

Где a k это действительные числа, представляющие коэффициенты многочлена и
x k это переменные многочлена.

Вышеупомянутый многочлен называют многочленом n -ой степени, то есть deg(f(x)) = n , где n представляет наивысшую степень переменной.

Схема Горнера для деления многочлена - это алгоритм упрощения вычисления значения многочлена f(x) при определённой величине x = x 0 методом деления многочлена на одночлены (многочлены 1 ой степени). Каждый одночлен включает в себя максимум один процесс умножения и один процесс сложения. Результат, полученный из одного одночлена, прибавляют к результату полученному от следующего одночлена и так далее в аккумулятивной манере. Такой процесс деления также называют синтетическим делением.

Чтобы объяснить вышесказанное, давайте перепишем многочлен в развёрнутой форме;

f(x 0) = a 0 + a 1 x 0 + a 2 x 0 2 + ... + a n x 0 n

Это также может быть записано как:

f(x 0) = a 0 + x 0 (a 1 + x 0 (a 2 + x 0 (a 3 + ... + (a n-1 + a n x 0)....)

Алгоритм, предложенный данной схемой, основан на нахождении значений одночленов образованных выше, начиная с тех которые заключены в больше скобок и двигаясь наружу, для нахождения значения одночленов во внешних скобках.

Алгоритм приводится в действие, следуя нижеизложенным шагам:

1. Дано k = n
2. Пусть b k = a k
3. Пусть b k - 1 = a k - 1 + b k x 0
4. Пусть k = k - 1
5. Если k ≥ 0 , то вернуться на шаг 3
иначе Конец

Этот алгоритм может быть также графически визуализирован, принимая во внимание данный многочлен 5 ой степени:

f(x) = a 0 + a 1 x + a 2 x 2 + a 3 x 3 + a 4 x 4 + a 5 x 5

значение которого находится как x = x 0 , путём перестановки его следующим образом:

f(x 0) = a 0 + x 0 (a 1 + x 0 (a 2 + x 0 (a 3 + x 0 (a 4 + a 5 x 0))))

Другим способом представить результаты используя этот алгоритм можно в виде данной ниже таблицы:

Таким образом, f(2) = 83.

Почему нам это необходимо делать?

Обычно, находя значения многочлена при определённом значении переменной, мы привыкли подставлять это значение в многочлен и производить вычисления. Мы также можем разработать копьютерную программу для математического вычисления, которая является необходимостью, когда мы имеем дело со сложными многочленами высоких степеней.

Метод, с помощью которого компьютер обрабатывает проблему, зависит, в основном, от того как Вы, как программист, описываете это компьютеру. Вы можете разработать Вашу программу для нахождения значения многочлена методом прямой подстановки значения переменной или использовать синтетическое деление, данное в схеме Горнера. Единственное отличие между этими двумя подходами это скорость, с которой компьютер будет находить решение том или ином случае.

Преимущество схемы Горнера в том, что оно снижает количество операций умножения. Принимая во внимание то, что время обработки каждого процесса умножения от 5 до 20 раз больше, чем время обработки процесса сложения, Вы можете утверждать, что построение программы для нахождения значения многочлена по схеме Горнера существенно уменьшит затрачиваемое компьютером время вычисления.